• Title/Summary/Keyword: alcohol productivity

Search Result 71, Processing Time 0.024 seconds

Study of Hardness Effects of Water in Alcohol Fermentation to Focus Effect of Ozone (물의 경도가 알코올발효에 미치는 영향 연구 -오존의 영향을 중심으로-)

  • 박영규
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.98-103
    • /
    • 2004
  • The aim of the present study was to investigate how the hardness of groundwater affects in the alcohol fermentation. Ozone plays an important role to enhance the water quality, resulting in 85% reduction of hardness, and 30% increase in total glucose produced due to increased conductivity and biodegradability of water. After all, experiments using ozone are presented for the improvement of alcohol productivity. Although initially increased slightly alcohol production, higher than expected ethanol production was observed, with ozone treatment resulting in 20% higher production.

Effect of Fermentation Temperature on the Production of high content Alcohol (고농도 알코올 생성을 위한 온도의 영향)

  • 유연우;권정주
    • Korean Journal of Microbiology
    • /
    • v.20 no.2
    • /
    • pp.67-72
    • /
    • 1982
  • The effect of fermentation temperature on the production of high content alcohol has been investigated with high substrate concentration. The maximum specific growth rate, ${\mu}max\;was\;0.461hr^{-1}\;at\;35^{\circ}C$ which was the highest, whereas the maximum biomass concentration waas 8.7g/l at $25^{\circ}C$, at the growth rate lower than at $35^{\circ}C$. Approximately 140g/l of ethanol was produced in the temperature range of 20 to $25^{\circ}C$ with nearly complete comsumption of the substrate. Extended fermentation time has been required at lower temperatures, however, for the maximum values of biomass concentration and alcohol content, hence higher ethanol productivity, as the temperature was elevated to $40^{\circ}C$. The viability of yeasts was greatly improved by lowering the fermentation temperature down to $25^{\circ}C$ and also extended survival of the cells has been observed at lower fermentation temperatures, although the ethanol concentration of both waas higher.

  • PDF

Stable Fermentative Hydrogen Production by Polyvinyl Alcohol (Pva) Gel Beads Fluidized Bed Reactor

  • Nakao, Masaharu;Kawagoshi, Yasunori;Hino, Naoe;Iwasa, Tomonori;Furukawa, Kenji
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • A novel hydrogen fermentation technique by using polyvinyl alcohol (PVA) gel beads as a biomass carrier was investigated. The hydrogen gas was stably produced throughout the experimental period in a continuous reactor. Even though the hydrogen productivity was suddenly decrease by experimental troubles, the bacteria attached to the PVA gel beads played as an inoculum, it was promptly recovered. The hydrogen yield per glucose was not very high ($1.0-1.2mol-H_2/mol-glucose$), thus the optimization of the experimental conditions such as ORP and HRT should be considered to improve the hydrogen productivity. Bacterial community was stable during experimental period after the PVA gel beads applying, which indicated that applying of biomass carrier was specific to keep not only the biomass but also the bacteria commonly. Clostridium species were phylogenetically detected, which suggested that these bacteria contributed to the hydrogen production in the biofilm attached to the PVA gel beads.

  • PDF

Whole Cell Bioconversion of Ricinoleic Acid to 12-Ketooleic Acid by Recombinant Corynebacterium glutamicum-Based Biocatalyst

  • Lee, Byeonghun;Lee, Saebom;Kim, Hyeonsoo;Jeong, Kijun;Park, Jinbyung;Park, Kyungmoon;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.452-458
    • /
    • 2015
  • The biocatalytic efficiency of recombinant Corynebacterium glutamicum ATCC 13032 expressing the secondary alcohol dehydrogenase of Micrococcus luteus NCTC2665 was studied. Recombinant C. glutamicum converts ricinoleic acid to a product, identified by gas chromatography/mass spectrometry as 12-ketooleic acid (12-oxo-cis-9-octadecenoic acid). The effects of pH, reaction temperature, and non-ionic detergent on recombinant C. glutamiucm whole cell bioconversion were examined. The determined optimal conditions for production of 12-ketooleic acid are pH 8.0, 35℃, and 0.05 g/l Tween80. Under these conditions, recombinant C. glutamicum produces 3.3 mM 12-ketooleic acid, with a 72% (mol/mol) maximum conversion yield, and 1.1 g/l/h volumetric productivity in 2 h; and 3.9 mM 12-ketooleic acid, with a 74% (mol/mol) maximum conversion yield, and 0.69 g/l/h maximum volumetric productivity in 4 h of fermentation. This study constitutes the first report of significant production of 12-ketooleic acid using a recombinant Corynebacterium glutamicum-based biocatalyst.

Characteristics of Liquid Fermentation Mash and Distilled Liquor Prepared Using Sorghum (국내 재배 수수를 활용한 액상발효 술덧 제조 및 증류식 소주의 특성)

  • Hyun Jin Choi;Ye Seul Kwon;Hyun Ju Kim;Han-Seok Choi
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2024
  • This study aimed to establish a liquid fermentation process to increase the alcohol productivity of distilled soju using domestically grown sorghum. After preparing mash with different ratios of sorghum and rice, the optimal amount of raw material was determined, and sorghum pretreatment methods, enzyme types, and modified nuruk were tested. The soluble solids (°Brix) of the saccharification solution ranged from 3.00 to 25.20 for bacterial α-amylase and 4.20 to 20.80 for fungal α-amylase. Bacterial α-amylase was more suitable for starch saccharification. At 20% sorghum and 80% rice mash, the alcohol content was 15.11%, showing that soluble solids and alcohol content increased with higher rice content. When puffed sorghum was used with bacterial α-amylase, alcohol content rose to 16.55%, showing puffed sorghum is suitable for fermentation without a separate saccharification process. In mash with 20% puffed sorghum and 80% rice, adding modified nuruk resulted in alcohol contents of 16.73% and 16.28%, respectively, for groups with and without nuruk. The alcohol content of the distillate after vacuum distillation showed a similar trend, suggesting modified nuruk has little effect on alcohol productivity and requires further research. When modified nuruk was added, alcohol and esters increased, but sulfur compounds, which are perceived as off-odors, also rose. Therefore, it is better not to use modified nuruk in distilled soju made with sorghum. In conclusion, the process using 20% puffed sorghum, 80% rice, and bacterial α-amylase is deemed feasible for improving the productivity of distilled soju through liquid fermentation with puffed sorghum and enzymes.

The Optimization of the Composition of Nitrogen Source in the Medium of Alcohol Fermentation of S. cerevisiae (S. cerevisiae에 의한 알콜배지에서 질소원 조성의 최적화 연구)

  • 허병기;유현주정재기
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.255-261
    • /
    • 1991
  • The effect of concentration of yeast extract and NH4Cl in the mediun of alcohol fermentation of S. cerevisiae ATCC 24858 on the fermentation characteristics, specific growth rate, sugar conversion, alcohol productivity was experimentally investigated. Regardless of initial sugar concentrations, the values of the above three characteristics increased with augument of concentration of yeast extract. However, the increasing tendency ceased above a certain concentration. The concentration of NH4Cl had little effect on the change of the three characteristics. The functional relationships between the concentration of yeast extract and the characteristics were different according to the initial sugar concentrations, but those between the ratio of yeast extract concentration to initial sugar concentration and the characteristics could be expressed as same forms respectively regardless of initial sugar concentrations. Also the values of the three characteristics approached to the maximum values around 0.085 of the ratio, but did not increase any more above 0.1 of the ratio. We have come to conclusion that the optimum ratio of the yeast extract concentration to the initial sugar concentration was about 0.085 and the ratio should not be decided as greater than 0.1 in the medium of alcohol fermentation of S. cerevisiae ATCC 24858.

  • PDF

Continuous Alcohol Fermentation by a Flocculating Yeast (응집성 효모를 이용한 연속 알코올 발효)

  • 남기두;이인기;조훈호
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.487-490
    • /
    • 1991
  • In this study continuous alcohol fermentation of molasses by the recirculation system has investigated. After cultivation of yeast cells in the YPD medium with increasing the medium concentration from 10 to 183.5 g/l stepwisely, the fermentation medium was replaced by molasses. The maximum cell mass was 25 g/l, and the mean cell mass during the operation was 23.5g/1, which was 3.4 times higher compared with a conventional batch system. The optimum fermentation conditions with feeding molasses of 180 g/l were obtained when the fermentation was carried out at 500 rpm and at the dilution rate of 0.037 $h^{-1}$. Under these conditions we could safely operate the fermentor for 645 h without any trouble. The maximum alcohol productivity was 4.9 g$l\cdot h$ with an alcohol concentration of 53.9 g/l at the dilution rate of 0.091$h^{-1}$.

  • PDF

Application of Thermotolerant Yeast at High Temperature in Jar-fermentor Scale.

  • Sohn, Ho-Yong;Kim, Young-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.316-321
    • /
    • 1994
  • We investigated the possibility of industrial application and economit process of high temperature fermentation by thermotolerant alcohol producing yeasts as previously reported. From the 20% glucose media, the RA-74-2 produced 11.8% (v/v) ethanol at $32^{\circ}C$ (0.5% inoculum) and 10.6% (v/v) ethanol at $40^{\circ}C$ (3% inoculum), respectively. Also, 11.3% (v/v) ethanol was produced for 96 hours in the temperature-gradient fermentation. These results suggest that the RA-74-2 could isuccessfully be applied to save the cooling water and energy in industrial scale without re-investment or modification of established fermentation systems. When potato starch was used as the substrate for the RA-74-2, high temperature fermentation above $40^{\circ}C$ was more appropriate for industrial utilization because organic nitrogen was not necessary to economical fermentation. As the naked barley media just prior to industrial inoculation, taken from the Poongkuk alcohol industry Co., were used, 9.6% (v/v) ethanol was produced at $40^{\circ}C$ for 48 hours in jar-fermentor scale (actually, 9.5-9.8% (v/v) ethanol was produced at 30~$32^{\circ}C$ for 100 hours in industrial scale). The ethanol productivity was increased by the high glucoamylase activity as well as the high metabolic ratio at $40^{\circ}C$ Therefore, if the thermotolerant yeast RA-74-2 would be used in industrial scale, we could obtain a high productivity and saving of the cooling water and energy. Meanwhile, the RA-912 produced 6%(v/v) ethanol in 10% glucose media at $45^{\circ}C$ and showed the less ethanol-tolerance compared with industrial strains. As the produced alcohol was recovered by the vacuum evaporator at $45^{\circ}C$ in 15% glucose media, the final fermentation ratio was enhanced (76% of theoretical yields). This suggest that a hyperproductive process could be achieved by a continuous input of the substrate and continuous recovery of the product under vacuum in high cell-density culture.

  • PDF

Optimization for Alcohol Fermentation by Kluyveromyces marxianus using Jerusalem Artichoke Powder (돼지감자 분말을 이용한 Kluyveromyces marxianus의 알콜올 발효)

  • 채은미;최언호
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.3
    • /
    • pp.265-271
    • /
    • 1991
  • In order to produce alcohol for the alternative energy from dried powder of Jerusalem artichoke was investigated with Kluyveromyces marxianus UCD(FST)55-82, which was reported to assimilate inulin. The optimal condition for the production of ethanol by K. marxianus was elucidated to be incubation temperature of $30^{\circ}C$, initial pH 5.44, agitation of 100 rpm, 1,000 ml of medium in a 2.5l-vessel, anaerobic state, and inoculation of 2.5%(v/v). Addition of antifoam A concentrate(si1icon polymer) of 0.01% and urea of 0.1% increased the concentration of ethanol effectively. The optimized condition showed ethanol concentration of 6.8%(v/v) in Jerusalem artichoke liquid medium, production yield of 91.91% and productivity of 2.71 g/l/hr during the first day and 0.71g ethanol/l/hr during four days of incubation.

  • PDF

Continuous Alcohol Fermentation by a Tower Fermentor with Cell Recycle Using Flocculating Yeast Strain (Flocculating 효모균주의 재순환에 의한 Tower 발효조를 이용한 연속알콜발효)

  • 페차랏칸자나시리완;유연우김공환
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 1989
  • A study on the continuous fermentation with cell recycle by a tower fermentor to produce ethanol has been carried out. ethanol fermentation was conducted with flocculating yeast strain, Saccharomyces cerevisiae TS4, to compare the ethanol productivity with conventional continuous process. Employing a 15% glucose feed, a cell density of 50 g/l was obtaind. The ethanol productivity of the cell recycle system was found to be 26.5g EtOH/1-hr, which was nearly 7.5 times higher than the conventional continuous process without cell recycle. A cell recycle ratio of 7 to 8 resulted in the highest ethanol productivity and cell concentration. Thus the cell recycle ratio was found to be a key factor in controlling the production of clarified overflow liquid. An aeration rate above 3.8 $\times$ 10-3 VVM seemed to decrease the ethanol productivity. The continuous fermentation with cell recycle was successfully used in the separation of cells from fermentation broth with enhancement of mixing in the tower fermentor.

  • PDF