• Title/Summary/Keyword: alcohol metabolic enzyme system

Search Result 5, Processing Time 0.022 seconds

Effects of Pueraria thunbergiana Bentham Water Extracts on Hepatic Alcohol Metabolic Enzyme System In Rats (칡 열수추출물이 흰쥐의 알콜올 대사효소계에 미치는 영향)

  • 김명주;이정수;하오명;장주연;조수열
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.92-97
    • /
    • 2002
  • The effects of Pueraria flos (PF) and Pueraria radix (PR) water extract on the hepatic alcohol metabolic enzyme activities were examined in rats that were orally administered ethanol (25% v/v, 5g/kg body weight/day) for 5 weeks. The PF and PR water extract were supplemented in a diet, based on 1.2 g or 2.4 g of raw PF or PR/kg body weight/body. Alcohol administration without the PF or PR supplementation significantly decreased net weight gain, feed intake and feed efficiency ratio. However. both dose of the PF of PR supplementation resulted in significant enhancement of growth and suppression of increased relative weight of liver, brain and heart by alcohol administration. Activities of hepatic alcohol dehydrogenase and microsomal ethanol oxidizing system were higher in the alcohol treated group than in the normal group, while aldehyde dehydrogenase activity was significantly lowered in the alcohol treated group. The hepatic metabolic enzyme activities altered by alcohol administration were normalized by both doses of PF or PR supplement. Hepatic monoamine oxidase activity and hydrogen peroxide, which were significantly higher in the alcohol treated group than in the normal group, were also decreased by the supplementation with either PF or PR. These results indicate that low-or high-supplementation of either water extract PF or PR may alleviate ethanol-induced hepatotoxicity by altering alcohol metabolic enzyme activities.

Effect of Methionine and Selenium Levels on Alcohol Metabolic Enzyme System in Rats (Methionine과 Selenium 수준이 흰쥐의 알코올대사 효소계에 미치는 영향)

  • Kim, Myung-Joo;Park, Eun-Mi;Lee, Mi-Kyung;Cho, Soo-Yeal
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.319-326
    • /
    • 1997
  • This study was conducted to investigate the effects of methionine(Met) and selenium(Se) levels on alcohol metabolic enzyme system in rats. Sprague-Dawley male rats were fed on diets containing one of the three levels of Met(0, 3, 9g/kg diet) with or without Se(0.45mg/kg diet). Alcohol was administrated with 25%(v/v) ethanol orally at the same time once a day in alcohol group and isocaloric sucrose was administrated to the control group. The rats were sacrificed after 5 and 10 week of feeding periods. Alcohol dehydrogenase(ADH) and microsomal ethanol oxidizing system(MEOS) activities of hepatic tissuedom were increased more in alcohol treated groups than control group. Increment of activities preinated in simultaneous deficiency of dietary Met and Se(LMet-Se+EtOH) group. Aldehyde dehydrogenase (AIDH) activity was decreased more in alcohol treated groups than control group and significantly decreased in Met and Se supplemented(NMet+Se+EtOH) group. Hepatic cytochrome P-450 content and xanthine oxidase(XO) activity were significantly increased in alcohol treated groups Compared to control group and predominated in Met deficiency(LMet) group and excessive Met administration (HMet) group. Superoxide dismutase(SOD), catalase, glutathione S-transferase(GST) activities tended to increase by alcohol administration, the degree of increase predominated in 10 week. The activity of glutathione peroxidase(GSH-Px) was decreased in alcohol groups and tended to increase in proportion to the level of dietary Met.

  • PDF

Metabolism and Fermentation of Clostridium acetobutylicum (Clostridium acetobutylicum의 대사와 발효)

  • 이상엽
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The acetone-butanol fermentation by C. acetobutylicum has gained increasing attention for the following reasons. First, the finite supply of petrochemical resources, combined with increasing concern over global environmental effects and the unstable nature of the price of petroleum has renewed interest in the development of fermentation technology that allows utilzation of biomass wastes for the production of alcohol. Second, it serves as excellent model system for understading the regulation and molecular biology of tightly regulated complex primary metabolism, and for applications of metabolic engineering. In this review various aspects of acetone-butanol fermentation by C. acetobutylicm including strain and fermentation characteristics, enzyme regulation, and solvent formation mechanism, and product recovery and summarized.

  • PDF

Effects of Flower of Pueraria lobata on Lipid Peroxidation and Activities of Alcohol Metabolic Enzymes in Alcohol-treated Rats (갈화가 에탄올을 투여한 흰쥐의 지질과산화와 알코올 대사효소의 활성도에 미치는 영향)

  • 이정숙;김나영;이경희;김갑순;박희준;최종원;김석화
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.5
    • /
    • pp.935-942
    • /
    • 2000
  • This study was designed to investigate the effect of flower of Pueraria lobata on liped peroxidation and activities of alcohol metabolic enzymes in alcohol-treated rats. Male Spra gue-Dawley rats were given 25% ethanol (Alcohol), 25% ethanol and 5 mg tectorigenin/kg B.W.(Alc.-Tec), 25% ethanol and 5mg kaikasaponin III/kg B.W. (Alc-Kai). The contents of serum total lipid, triglyceride and phospholipid were increased by ethanol treatment and were lower in the Alc.-Tec and Alc.-Kai group than in the Alcohol group. Decreased serum HDL-cholesterol by alcohol treatment was recovered by tectorigenin and kaikasaponin III. Microsomal cytochrome P-450, aniline hydroxylase and aminopyrine N-demethylase activities were increased by ethanol and were lower in the Alc. Tec and Alc.-Kai group than in the Alcohol group. Activity of hepatic alcohol dehydrogenase was increased by ethanol and was higher in the Alc.-Tec and Alc.-Kai group than in the Alcohol group. Microsomal ethanol oxidizing system activity was higher in Alc.-Tec group than in the other group. No significant difference was found in catalase activity among treatment groups. These data indicate that tectorigenin and kaikasaponin III were effected alcohol metabolic enzyme system and the liver damage associated with chronic ethanol consumption.

  • PDF

Effect of Dietary Protein and Fiber on Ethanol-induced Hepatotoxicity in Rats (흰쥐의 에탄올성 간장해에 미치는 식이 단백질과 섬유소의 영향)

  • 조수열;박은미;이미경;장주연;김명주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.4
    • /
    • pp.675-681
    • /
    • 1997
  • This study was conducted to investigate the effect of dietary protein and fiber levels on the activities of ethanol metabolizing enzymes of liver in ethanol-treated rats. Sprague-Dawley male rats were fed on diets containing two levels of protein(7, 20%/kg diet) and pectin(5, 10%/kg diet). In ethanol experiments, ethanol(25% v/v) was administered by oral intubation(5g/kg body weight) at the same time once a day Control animals received an isocaloric dose of sucrose. The rats were sacrificed after 5 weeks of feeding periods. Alcohol dehydrogenase and microsomal ethanol oxidizing system activities of hepatic tissue were increased more in ethanol-treated groups than in control groups. Increment of activities predominated in normal protein normal fiber group. Aldehyde dehydrogenase activity was decreased in ethanol-treated groups and significantly decreased in normal Protein normal fiber group. Cytochrome P-450 content was significantly increased in ethanol-treated groups and Predominated in normal protein groups. Xanthine oxidase activity was increased in ethanol-treated groups, but not significantly except normal protein normal fiber group. Glutathione content tended to increase in proportion to level of dietary protein and was higher in normal fiber groups than in high fiber groups, whereas it was decreased by ethanol treatment. Lipid Peroxide content was significantly increased in low Protein normal fiber groups.

  • PDF