• 제목/요약/키워드: albedo

검색결과 281건 처리시간 0.029초

Photometric study of Main-belt asteroid (298) Baptistina

  • Kim, Dong-Heun;Kim, Myung-Jin;Lee, Hee-Jae;Kaplan, Murat;Erece, Orhan;Kim, Taewoo;Yoon, Joh-Na;Marciniak, Anna;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Yonggi
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.48.1-48.1
    • /
    • 2021
  • The Main-belt asteroid (298) Baptistina (hereafter 'Baptistina') is regarded as an X- (or C-) type asteroid and the largest member of the Baptistina asteroid family. Its basic physical properties play an important role in understanding the rotational evolution and orbital dynamics of the Baptistina family. In this study, we determined the physical characteristics of Baptistina from the optical observations. We conducted BVRI and R band photometric observations from 2017 to 2021 for a total of 47 nights using the 0.5 - 2.0 m-class telescopes. As a result, the color indices of Baptistina were derived as, , and ; this result is consistent with the previous classification of Baptistina as an X- (or C-) type. We also determined absolute magnitude () and slope parameter () by using a simplified version of the IAU H & G function (Bowell et al. 1989) are mag and respectively. We calculated the effective radius of Baptistina of km considering the visual geometric albedo of 0.131 from the NEOWISE data. Using the light-curve inversion method, the sidereal rotation period of 16.224235 h and the 3D shape model with a pole orientation (,) were also determined. In this presentation we will introduce our observations and results, and also discuss about the physical properties of Baptistina asteroid family members such as color indices.

  • PDF

노말맵과 알베도맵 추정을 통한 영상 기반 재조명 (Image-based relighting using normal map and albedo map prediction)

  • 안홍현;이영현;김영서;강동완
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 하계학술대회
    • /
    • pp.101-104
    • /
    • 2021
  • 영상에 새로운 광원을 추가하거나 기존의 광원을 변경하여 영상 내 오브젝트들에 적용된 조명을 변경하는 것을 영상 기반 재조명이라 한다. 하지만, 영상에는 재조명을 위해 필요한 광원과 오브젝트들의 3차원 기하 정보가 부재하다는 문제가 있다. 이를 해결하기 위해, 본 연구에서는 영상으로부터 재조명에 필요한 요소들을 추정하는 접근법을 취한다. 오브젝트 표면의 노말과 알베도는 조명의 주 요소이지만 광원에는 독립적이므로 새로운 광원에 대한 재조명을 가능케 한다. 따라서 본 연구는 영상으로부터 노말맵과 알베도맵을 추정한 뒤, 이를 이용하여 영상 기반 렌더링하는 영상 재조명 방법을 제안한다. 조건부 적대적 생성망을 다양한 조명 환경에서 렌더링된 3차원 오브젝트 영상들과 그에 대응하는 노말맵, 알베도맵을 이용해 학습함으로써, 임의의 영상에 대한 노말맵과 알베도맵 추정기를 생성한다. 이를 통해 추정된 노말맵과 알베도맵은 3차원 공간상에서 새로운 광원에 대해 렌더링됨으로써 재조명 영상을 생성한다. 마지막으로, 영상 기반으로 재조명된 영상과 ground truth와의 비교 실험을 통해 본 연구에서 제안한 방법이 유효함을 확인한다.

  • PDF

Optical telescope with spectro-polarimetric camera on the moon

  • KIM, Ilhoon;HONG, Sukbum;KIM, Joohyun;Seo, Haingja;Kim, Jeong hyun;Choi, Hwajin
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.78.1-78.1
    • /
    • 2021
  • A Lunar observatory not only provides ideas and experiences for space settlements from the Moon to Mars, but also puts the telescope in an optimal position to compete with space telescopes. Earth observation on the Moon's surface has the advantage of no atmospheric scattering or light pollution and is a stable fuel-free observation platform, allowing all longitude and latitude of the Earth to be observed for a month. Observing the entire globe with a single observation instrument, which has never been attempted before, and calculating the global albedo will significantly help predict the weather and climate change. Spectropolarimetric observations can reveal the physical and chemical properties of the Earth's atmosphere, track the global distribution and migration path of aerosols and air pollutants, and can also help detect very small space debris of which the risk has increased recently. In addition, the zodiacal light, which is difficult to observe from Earth, is very easy to observe from the lunar observatory, so it will be an opportunity to reveal the origin of the solar system and take a step closer to understanding the exoplanet system. In conclusion, building and developing a lunar observatory will be a groundbreaking study to become the world's leader that we have never tried before as a first step in expanding human experience and intelligence.

  • PDF

저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성 (The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops)

  • 류남형;이춘석
    • 한국조경학회지
    • /
    • 제41권6호
    • /
    • pp.107-116
    • /
    • 2013
  • 본 연구는 저토심 옥상녹화모듈의 빗물유출 및 도시열섬 저감효과를 정량적으로 평가하기 위해, 저토심 경사 평지붕 녹화모듈의 저류 및 증발산 특성을 규명한 것이다. 이를 위해 기린초를 식재한 라이시미터(깊이 100mm)를 4방향(동, 서, 남, 북)의 50% 경사 지붕과 평지붕 위에 구축하였다. 그리고 저토심 경사지붕 및 평지붕 녹화모듈을 대상으로 연간 수분보유량 및 저류량과 증발산량 그리고 옥상과 평지붕 녹화모듈의 표면온도를 2012년 9월 1일부터 2013년 8월 31일까지 1년간 연속적으로 측정하였다. 측정된 자료를 근거로 분석한 녹화모듈의 저류 및 증발산 특성은 다음과 같다. 경사지붕 녹화모듈의 수분보유량은 눈이 오는 겨울철을 제외하면 강우 직후 8.7~28.4mm까지 상승하였으며, 무강우 지속 시 3.3mm까지 저하하는 것으로 나타났다. 경사지붕 녹화모듈은 최대 22.2mm까지 강우를 저류했던 것으로 나타났다. 녹화모듈의 강우량 대비 강우 저류율 예측식은 경사지붕의 경우 [강우 저류율(%)=-18.37 ln(강우량(mm))+107.75, $R^2$=0.79], 평지붕의 경우 [강우 저류율(%)=-22.64 ln강우량(mm))+130.8, $R^2$=0.81]였다. 경사지붕 녹화모듈의 증발산량은 강우 후 경과일수에 따라 급격히 감소하였으며, 봄철과 가을철에는 로그함수형으로, 여름철에는 거듭제곱함수형으로 감소하였다. 그리고 경사지붕 녹화모듈의 강우 후 일증발산량은 여름 > 봄 > 가을 > 겨울 순으로 높게 나타났다. 이는 일사량 및 기온의 차이에 의한 것으로 사료된다. 녹화모듈의 증발산량은 강우 후 3~5일간 2~7mm/day에서부터 1mm/day 미만으로 급격히 감소하였으며, 이후 완만하게 감소하였다. 이는 녹화모듈에 식재된 기린초는 수분이 충분할 경우에는 수분을 급격히 소비하고, 수분이 부족할 때는 수분을 보존한다는 것을 시사한다. 여름철 알베도는 옥상면이 0.151, 옥상녹화면이 0.137 그리고 겨울철 알베도는 옥상면이 0.165, 옥상녹화면이 0.165로 나타나, 옥상면과 옥상녹화면의 알베도에는 큰 차이가 없었다. 여름철 녹화에 의한 표면온도의 저감효과는 일평균표면온도가 $1.6{\sim}13.8^{\circ}C$(평균 $9.7^{\circ}C$), 일최고표면온도가 $6.2{\sim}17.6^{\circ}C$(평균 $11.2^{\circ}C$)로 나타났다. 겨울철 녹화에 의한 온도 차이는 일평균 표면온도가 $-2.4{\sim}1.3^{\circ}C$(평균 $-0.4^{\circ}C$), 일최고표면온도가 $-4.2{\sim}2.6^{\circ}C$(평균 $0.0^{\circ}C$)로 크게 나타나지 않았다. 증발산량이 증가함에 따라 녹화에 의한 저감온도가 선형함수형으로 커지는 것으로 나타났으며, 증발산량에 따른 저감온도의 예측식은 [저감온도($^{\circ}C$)=$1.4361{\times}$증발산량(mm)+8.83, $R^2$=0.59]였다. 무강우 지속 시 녹화에 의한 표면온도 저감은 세덤 수관에 의한 차양효과에 의한 것으로 판단되었다. 본 연구 결과, 녹화모듈에 의한 저토심 옥상녹화는 저류와 증발산 작용에 의해 빗물 유출 및 도시열섬 관리에 긍정적인 효과를 준다는 것을 규명하였다. 또한 기린초는 무관수 저토심 옥상녹화용 수종으로 이상적 식물재료이며, 장기적인 도시열섬 완화라는 측면에서는 기린초의 증발산효과뿐 아니라 차양효과를 고려해야 한다는 것을 제시하였다.

DEEP-South: Round-the-clock Census of Small bodies in the Southern Sky

  • Moon, Hong-Kyu;Kim, Myung-Jin;Yim, Hong-Suh;Choi, Young-Jun;Bae, Young-Ho;Roh, Dong-Goo;Ishiguro, Masateru;Mainzer, Amy;Bauer, James;Byun, Yong-Ik;Larson, Steve;Alcock, Charles
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.56.3-57
    • /
    • 2015
  • As of early 2015, more than 12,000 Near-Earth Objects (NEOs) have been catalogued by the Minor Planet Center, however their observational properties such as broadband colors and rotational periods are known only for a small fraction of the population. Thanks to time series observations with the KMTNet, orbits, optical sizes (and albedo), spin states and three dimensional shapes of asteroids and comets including NEOs will be systematically investigated and archived for the first time. Based on SDSS and BVRI colors, their approximate surface mineralogy will also be characterized. This so-called DEEP-South (Deep Ecliptic Patrol of the Southern Sky) project will provide a prompt solution to the demand from the scientific community to bridge the gaps in global sky coverage with a coordinated use of the network of ground-based telescopes in the southern hemisphere. We will soon finish implementing dedicated software subsystem consisted of automated observation scheduler and data pipeline for the sake of increased discovery rate, rapid follow-up, timely phase coverage, and efficient data analysis. We will give a brief introduction to test runs conducted at CTIO with the first KMTNet telescope in February and March 2015 and experimental data processing. Preliminary scientific results will also be presented.

  • PDF

MTSAT-1R 정지기상위성 자료를 이용한 전운량 산출 알고리즘 개발 (Development of Cloud Amount Calculation Algorithm using MTSAT-1R Satellite Data)

  • 이병일;김윤재;정주용;이상희;오성남
    • 대기
    • /
    • 제17권2호
    • /
    • pp.125-133
    • /
    • 2007
  • Cloud amount calculation algorithm was developed using MTSAT-1R satellite data. The cloud amount is retrieved at 5 km ${\times}$ 5 km over the Korean Peninsula and adjacent sea area. The algorithm consists of three steps that are cloud detection, cloud type classification, and cloud amount calculation. At the first step, dynamic thresholds method was applied for detecting cloud pixels. For using objective thresholds in the algorithm, sensitivity test was performed for TBB and Albedo variation with temporal and spatial change. Detected cloud cover was classified into 3 cloud types (low-level cloud, cirrus or uncertain cloud, and cumulonimbus type high-level cloud) in second step. Finally, cloud amount was calculated by the integration method of the steradian angle of each cloud pixel over $3^{\circ}$ elevation. Calculated cloud amount was compared with measured cloud amount with eye at surface observatory for the validation. Bias, RMSE, and correlation coefficient were 0.4, 1.8, and 0.8, respectively. Validation results indicated that calculated cloud amount was a little higher than measured cloud amount but correlation was considerably high. Since calculated cloud amount has 5km ${\times}$ 5km resolution over Korean Peninsula and adjacent sea area, the satellite-driven cloud amount could show the possibility which overcomes the temporal and spatial limitation of measured cloud amount with eye at surface observatory.

기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석 (The Analysis of planning methode and case study for Model 'Climate Change Adaptation City')

  • 김정곤
    • KIEAE Journal
    • /
    • 제12권4호
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

Evaluation of Water Retentive Pavement as Mitigation Strategy for Urban Heat Island Using Computational Fluid Dynamics

  • Cortes, Aiza;Shimadera, Hikari;Matsuo, Tomohito;Kondo, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권4호
    • /
    • pp.179-189
    • /
    • 2016
  • Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.

SUNSHINE, EARTHSHINE AND CLIMATE CHANGE I. ORIGIN OF, AND LIMITS ON SOLAR VARIABILITY

  • GOODE PHILIP R.;DZIEMBOWSKI W. A.
    • 천문학회지
    • /
    • 제36권spc1호
    • /
    • pp.75-81
    • /
    • 2003
  • Changes in the earth's climate depend on changes in the net sunlight reaching us. The net depends on the sun's output and earth's reflectance, or albedo. Here we develop the limits on the changes in the sun's output in historical times based on the physics of the origin of solar cycle changes. Many have suggested that the sun's output could have been $0.5\%$ less during the Maunder minimum, whereas the variation over the solar cycle is only about $0.1\%$. The frequencies of solar oscillations (f- and p-modes) evolve through the solar cycle, and provide the most exact measure of the cycle-dependent changes in the sun. But precisely what are they probing? The changes in the sun's output, structure and oscillation frequencies are driven by some combination of changes in the magnetic field, thermal structure and velocity field. It has been unclear what is the precise combination of the three. One way or another, this thorny issue rests on an understanding of the response of the solar structure to increased magnetic field, but this is complicated. Thus, we do not understand the origin of the sun's irradiance increase with increasing magnetic activity. Until recently, it seemed that an unphysically large magnetic field change was required to account for the frequency evolution during the cycle. However, the problem seems to have been solved (Dziembowski, Goode & Schou 2001) using f-mode data on size variations of the sun. From this and the work of Dziembowski & Goode (2003), we suggest that in historical times the sun couldn't be much dimmer than it is at activity minimum.

발열체와 격막이 있고 일부가 열린 복합공간내의 자연대류-복사열전달에 관한 수치적 연구 (A numerical study on the combined natural convection and radiation in a partially open complex enclosure with a heater and partitions)

  • 김태국;민동호;한규익;손봉세;서석호
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.235-251
    • /
    • 1997
  • A numerical simulation on the combined natural convection and radiation is carried out in a partially open rectangular enclosure with a heater by using the finite volume and the S-8 discrete ordinate methods. The fluid inside the enclosure is considered as an absorbing, emitting and anisotropic scattering media. The heater causes a natural circulation of the fluid (10$^{5}$ $^{9}$ ) which results in significant in-flow of the ambient cold fluid through the partially open wall. Comparing the results of pure convection with those of the combined convection- radiation, the combined heat transfer results with small Planck numbers (P$_{l}$ <1.0) show much stronger circulation than those of the pure convection, and the fluid circulation is more evident for larger Rayleigh numbers. When one of three radiative properties - the medium absorption coefficient, the wall reflectivity, and the scattering albedo - increases, the fluid circulation and the heat transfer in the enclosure are reduced. The location of the heater and the open ratio of the right wall are also shown to affect the fluid circulation and heat transfer significantly. However, the anisotropy of the scattering phase function is shown to be unimportant for the fluid circulation and heat transfer within the enclosure considered in this study.