• Title/Summary/Keyword: airside pavement

Search Result 3, Processing Time 0.015 seconds

Pavement Impact Evaluation of Basic Materials of Airport Airside Deicers (공항 airside용 제설제의 기본물질에 대한 포장 영향성 평가 연구)

  • Kim, Young Ung;You, Kwang Ho;Jo, Chang Yeol;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.25-34
    • /
    • 2016
  • OBJECTIVES : This is a basic research for the domestic production of airport-airside deicers. This research selected basic materials for deicers appropriate for the pavement of domestic airports by evaluating the deicing performances of basic materials used in international-standard airport deicers and their impacts on pavements. METHODS : Laboratory investigation was conducted to evaluate the asphalt surface tensile strength, concrete scaling impact, ASR impact, and deicing performances of sodium formate (NaFm), potassium formate (KFm), sodium acetate (NaAc), and potassium acetate (KAc), which are the basic de-icing materials commonly used at international airports, approved by the FAA. In addition, the analyses were also performed on the airside deicer urea, which is currently used in domestic airports. RESULTS : Laboratory investigation confirmed that sodium formate, potassium formate, sodium acetate, and potassium acetate had superior surface tensile strength, concrete scaling impact, and deicing performance compared to airside urea, but they also had greater impacts on concrete ASR. Among these materials, sodium formate had the best asphalt surface tensile strength, concrete scaling impact, and deicing performance, while also having the greatest impact on ASR; hence, mitigation plans for ASR were needed, if it were to be used as airport-airside deicer. CONCLUSIONS : It is necessary to consider additional additives to prevent ASR of concrete pavements when developing airport-airside deicers using sodium formate, potassium formate, sodium acetate, and potassium acetate.

Case Study on Deciding a Time for Repairing Asphalt Pavement of Incheon International Airport (인천국제공항 아스팔트 포장 보수시기 결정 사례 연구)

  • Lee, Jae-Ho;Kim, Jang-Rack;Mun, Hyung-Chul;Cho, Nam-Hyun
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.49-60
    • /
    • 2013
  • PURPOSES : The evaluation of the pavement condition of the asphalt concrete pavement of No. 2 runway of Inchon International Airport through PMS, a supporting system for making a decision of pavement, maintenance and repair, was made, and the proper time for repair according to the PCI reduction rate was suggested. METHODS : By comparing and analyzing the evaluation results of pavements built in 2009, 2010, 2011, PCI change in each facility (No. 2 runway, C parallel taxiway, connection taxiway) was calculated. By applying the calculated change to PCI deduction rate model, the pavement condition of the target sections was estimated, and then the necessary section and time for repair were chosen. RESULTS : After careful consideration of the time for pavement and maintenance, based on the result of PCI prediction, it was estimated that the southern takeoff and landing section of No. 2 runway was required to be repaired in 2012; connection taxiway in 2013; and C parallel taxiway in 2014; however, the section which is the main moving route of connection taxiway and C parallel taxiway was needed to be repaired in 2012. CONCLUSIONS : For maintenance and repair of airport pavements, the optimal alternative should be chosen by considering economics and operability, via examining the time for repair and the aspect of management all together on the basis of this study.

Basic System Architecture Design for Airport GIS Service Models (Airport GIS 구축을 위한 서비스모델 설계에 관한 연구)

  • Sim, Jae-Yong;Lee, Tong-Hoon;Park, Joo-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.3
    • /
    • pp.82-94
    • /
    • 2008
  • Airport GIS is a comprehensive information system to improve security and efficiency of airport. At the initial stage to make it real, the current status of domestic and international regulations along with relevant standardization bas been reviewed. Gimpo Airport becomes a test-bed to get some ideas about how to bring the airport GIS into workflow by building service model and basic design based on current status and demand analysis of the airport. The 6 service models primarily brought into the project are as follows: (1) Local vehicles safety management in airside, (2) Intelligent traffic control between flights and vehicles at main cross points, (3) Dynamic safety management against FOD in airside and breakage on pavement, (4) Special support vehicle management such as deicing remotely controlled, (5) Response and support for fire vehicles and ambulances of signatory institutions in emergency. The upcoming research topic aims at drawing a specific design and building integrated system in the future.

  • PDF