• Title/Summary/Keyword: airplane rectilinear trajectory

Search Result 4, Processing Time 0.019 seconds

On determining the flyability of airplane rectilinear trajectories at constant velocity

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.5
    • /
    • pp.551-579
    • /
    • 2018
  • This work is concerned with the motion of propeller driven airplanes, flying at constant velocity on ascending or descending rectilinear trajectories. Its purpose is to provide important features of rectilinear flights that are required for airplane trajectory planning but that cannot be found already published. It presents a method for calculating the amount of fuel used, the restrictions on the trajectory parameters, as inclination and speed, which result from the load factor, the lift coefficient, the positivity and upper boundedness of the power available. It presents a complete discussion of both ascending and descending flights, including gliding. Some original remarks are made about the parameters of gliding. It shows how to construct tables of parameters allowing to identify rapidly flyable trajectories. Sample calculations are shown for the Cessna 182 and a Silver Fox like unmanned aerial vehicle.

A method to analyze the flyability of airplane trajectories with specified engine power

  • Gilles Labonte;Vincent Roberge;Mohammed Tarbouchi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.473-494
    • /
    • 2023
  • This article introduces a formalism for the analysis of airplane trajectories on which the motion is determined by specifying the power of the engines. It explains a procedure to solve the equations of motion to obtain the value of the relevant flight parameters. It then enumerates the constraints that the dynamical abilities of the airplane impose on the amount of fuel used, the speed, the load factor, the lift coefficient, the positivity and upper boundedness of the power available. Examples of analysis are provided to illustrate the method proposed, with rectilinear and circular trajectories. Two very different types of airplanes are used in the examples: a Silver Fox-like small UAV and a common Cessna 182 Skylane.

How airplanes fly at power-off and full-power on rectilinear trajectories

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.1
    • /
    • pp.53-78
    • /
    • 2020
  • Automatic trajectory planning is an important task that will have to be performed by truly autonomous vehicles. The main method proposed, for unmanned airplanes to do this, consists in concatenating elementary segments of trajectories such as rectilinear, circular and helical segments. It is argued here that because these cannot be expected to all be flyable at a same constant speed, it is necessary to consider segments on which the airplane accelerates or decelerates. In order to preserve the planning advantages that result from having the speed constant, it is proposed to do all speed changes at maximum deceleration or acceleration, so that they are as brief as possible. The constraints on the load factor, the lift and the power required for the motion are derived. The equation of motion for such accelerated motions is solved numerically. New results are obtained concerning the value of the angle and the speed for which the longest distance and the longest duration glides happen, and then for which the steepest, the fastest and the most fuel economical climbs happen. The values obtained differ from those found in most airplane dynamics textbooks. Example of tables are produced that show how general speed changes can be effected efficiently; showing the time required for the changes, the horizontal distance traveled and the amount of fuel required. The results obtained apply to all internal combustion engine-propeller driven airplanes.

Low thrust inclined circular trajectories for airplanes

  • Labonte, Gilles
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.237-267
    • /
    • 2017
  • Automatic trajectory re-planning is an integral part of unmanned aerial vehicle mission planning. In order to be able to perform this task, it is necessary to dispose of formulas or tables to assess the flyability of various typical flight segments. Notwithstanding their importance, there exist such data only for some particularly simple segments such as rectilinear and circular sub-trajectories. This article presents an analysis of a new, very efficient, way for an airplane to fly on an inclined circular trajectory. When it flies this way, the only thrust required is that which cancels the drag. It is shown that, then, much more inclined trajectories are possible than when they fly at constant speed. The corresponding equations of motion are solved exactly for the position, the speed, the load factor, the bank angle, the lift coefficient and the thrust and power required for the motion. The results obtained apply to both types of airplanes: those with internal combustion engines and propellers, and those with jet engines. Conditions on the trajectory parameters are derived, which guarantee its flyability according to the dynamical properties of a given airplane. An analytical procedure is described that ensures that all these conditions are satisfied, and which can serve for producing tables from which the trajectory flyability can be read. Sample calculations are shown for the Cessna 182, a Silver Fox like unmanned aerial vehicle, and an F-16 jet airplane.