• Title/Summary/Keyword: aircraft scheduling

Search Result 44, Processing Time 0.036 seconds

Effective simulation-based optimization algorithm for the aircraft runway scheduling problem

  • Wided, Ali;Fatima, Bouakkaz
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.335-347
    • /
    • 2022
  • Airport operations are well-known as a bottleneck in the air traffic system, putting growing pressure on the world's busiest airports to schedule arrivals and departures as efficiently as possible. Effective planning and control are essential for increasing airport efficiency and reducing aircraft delays. Many algorithms for controlling the arrival/departure queuing area are handled, considering it as first in first out queues, where any available aircraft can take off regardless of its relative sequence with other aircraft. In the suggested system, this problem was compared to the problem of scheduling n tasks (plane takeoffs and landings) on a multiple machine (runways). The proposed technique decreases delays (via efficient runway allocation or allowing aircraft to be expedited to reach a scheduled time) to enhance runway capacity and decrease delays. The aircraft scheduling problem entails arranging aircraft on available runways and scheduling their landings and departures while considering any operational constraints. The topic of this work is the scheduling of aircraft landings and takeoffs on multiple runways. Each aircraft's takeoff and landing schedules have time windows, as well as minimum separation intervals between landings and takeoffs. We present and evaluate a variety of comprehensive concepts and solutions for scheduling aircraft arrival and departure times, intending to reduce delays relative to scheduled times. When compared to First Come First Serve scheduling algorithm, the suggested strategy is usually successful in reducing the average waiting time and average tardiness while optimizing runway use.

Greedy Heuristic Algorithm for a Multidepot Aircraft Scheduling and Crew Scheduling Problem (복수모기지의 항공기 운항계획및 승무계획 문제의 발견적 기법)

  • Jang, Byeong-Man;Park, Sun-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.155-163
    • /
    • 1985
  • This paper presents a heuristic algorithm for a multidepot aircraft scheduling and crew scheduling with deal-head flights. This algorithm is extended from a Greedy heuristic algorithm for a multi-depot multi-salesman traveling salesman problem. We first transform a given flight schedule into a multi-depot multi-traveling salesman problem, considering aircraft flight policies and crew management constraints. Then we solve this problem by applying a modified Greedy heuristic algorithm.

  • PDF

An Optimal Algorithm for Aircraft Scheduling Problem by Column Generation (열(列) 생성(生成) 기법(技法)에 의한 항공기(航空機) 운항계획(運航計劃) 문제(問題)의 최적해법(最適解法))

  • Ki, Jae-Seug;Kang, Maing-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.4
    • /
    • pp.13-22
    • /
    • 1993
  • The aircraft scheduling, which is used to determine flight frequency, departure times and aircraft type assignments, is main problem of airline's planning. This paper proposes a new algorithm for aircraft scheduling that is to maximize airline profits. This paper proposes a column generation algorithm to get an optimal solution of the continous relaxation not using all the feasible variables, but using only a limited number of variables that is generated whenever it is necessary. Using this algorithm, proposes an optimal algorithm to get an optimal integer solution of aircraft scheduling problem efficiently. The effectiveness of the column generation algorithm and the optimal algorithm is illustrated by the computational results obtained from a series of real airline problems.

  • PDF

Models for Scheduling Individual Jet Aircraft

  • Yang, Hong-Suk
    • International Journal of Quality Innovation
    • /
    • v.10 no.2
    • /
    • pp.19-27
    • /
    • 2009
  • This paper considers the short term fleet scheduling problem as described by Keskinocak and Tayur (1998). Fleet scheduling may directly affect the service quality of fractional jet aircraft business. The contributions of this paper are two: (i) we show how their model is easily implemented in a standard modeling language, LINGO, and (ii) an alternate formulation is given which is expected to perform better on large, difficult problems.

Canard-Leading Edge Flap Scheduling for the Maneuverability Enhancement of a Fighter Class Aircraft (전투기급 항공기 기동성 증대를 위한 카나드-앞전플랩 스케줄링)

  • Chung, In-Jae;Kim, Sang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.165-170
    • /
    • 2007
  • During the conceptual design phase of a wing-body-canard type fighter class aircraft, as a method of maneuverability enhancement for an aircraft, effects of canard-leading edge flap scheduling have been studied. In this study, corrected supersonic panel method has been used to predict the drag polar characteristics due to canard-leading edge flap deflections in the high speed regime. Utilizing the predicted drag polar curves, the canard-leading edge flap scheduling laws have been established. These scheduling laws are the relation of canard-leading edge flap deflections and the flight conditions to maximize the lift-drag ratio. Based on the results obtained from the canard-leading edge flap scheduling, the present method has shown to be useful to enhance the maneuverability of wing-body-canard type fighter class aircraft.

A Study on Development of the Aircraft Scheduling System Using ILOG (ILOG를 이용한 항공기 운항 일정계획 시스템 개발에 관한 연구)

  • 윤종준;이장춘;이화기
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.65
    • /
    • pp.89-102
    • /
    • 2001
  • In this paper, the aircraft route scheduling consists of two steps; the pairing generation and the aircraft assignment. The pairing generation is heuristic approach how flights construct pairings from and to the main base. The aircraft resource assignment which is to establish a aircraft route schedule is constructed by constraint satisfaction problem technique. ILOG solver and schedule is used to solve this problem. In addition, a aircraft route reschedule process against departure-arrival delay or aircraft maintenance schedule change is added by partial constraints satisfaction problem technique. Also, Gantt chart made by ILOG views is used to show aircraft route schedule results more easily.

  • PDF

Ramp Activity Expert System for Scheduling and Co-ordination (공항의 계류장 관리 스케줄링 및 조정을 위한 전문가시스템)

  • Jo, Geun-Sik;Yang, Jong-Yoon
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1998
  • In this paper, we have described the Ramp Activity Coordination Expert System (RACES) which can solve aircraft parking problems. RACES includes a knowledge-based scheduling problem which assigns every daily arriving and departing flight to the gates and remote spots with the domain specific knowledge and heuristics acquired from human experts. RACES processes complex scheduling problem such as dynamic inter-relations among the characteristics of remote spots/gates and aircraft with various other constraints, for example, custome and ground handling factors at an airport. By user-driven modeling for end users and knowledge-driven near optimal scheduling acquired from human experts, RACES can produce parking schedules of aircraft in about 20 seconds for about 400 daily flights, whereas it normally takes about 4 to 5 hours by human experts. Scheduling results in the form of Gantt charts produced by the RACES are also accepted by the domain experts. RACES is also designed to deal with the partial adjustment of the schedule when unexpected events occur. After daily scheduling is completed, the messages for aircraft changes and delay messages are reflected and updated into the schedule according to the knowledge of the domain experts. By analyzing the knowledge model of the domain expert, the reactive scheduling steps are effectively represented as rules and the scenarios of the Graphic User Interfaces (GUI) are designed. Since the modification of the aircraft dispositions such as aircraft changes and cancellations of flights are reflected to the current schedule, the modification should be notified to RACES from the mainframe for the reactive scheduling. The adjustments of the schedule are made semi-automatically by RACES since there are many irregularities in dealing with the partial rescheduling.

  • PDF

Development of Scheduling System for Trajectory Based Air Traffic Management (궤적 기반의 항공 교통 관리를 위한 스케줄링 시스템 개발)

  • Oh, Eun-Mi;Eun, Yeonju;Kim, Hyounkyoung;Jeon, Daekeun
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.367-374
    • /
    • 2018
  • A trajectory-based scheduling system is proposed for air traffic management using next generation aviation data communication link. Based on the service concept of 4-dimensional trajectory data link (4DTRAD) using air traffic serveices (ATS) datalink Baseline 2, a procedure for trajectory-based operation of an en-route flight is established and described in detail. To mitigate air traffic controllers' workload which might be caused by various and complicated data utilization, a prototype of the scheduling system, which predicts the aircraft trajectory based on the flight intents received by air traffic service system and provides advisory information for air traffic control, was developed. The simulation environment for trajectory based operation was built to validate the scheduling functionality of the prototype.

Issues and approaches to spatial scheduling (공간 일정 계획의 이슈들과 접근방법)

  • 이경전;이재규
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.758-759
    • /
    • 1995
  • In large-scale industry such as shipbuilding, aircraft manufacturing, and construction industry etc., it is required to consider two or three-dimensional spatial availability as one of bottlenecked resource constraints. We call this kind of scheduling a spatial scheduling, which considers the dynamic spatial layouts of objects as well as the traditional resource constraints. Since 1991, we have researched on the spatial scheduling for shipbuilding plant (Lee & Lee, 1992; Lee et al., 1994, Lee et al., 1995). In this paper, we present the various issues of spatial scheduling for the researchers and developers attacking spatial scheduling problems.

  • PDF

Gain Scheduled Fuzzy Control on Aircraft Flight Control (게인 스케줄링 퍼지제어의 비행제어에 대한 적용)

  • 홍성경;심규홍;박성수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.125-130
    • /
    • 2004
  • This paper describes an approach for synthesizing a Fuzzy Logic Controller(FLC) that combines the benefits of fuzzy logic control and fuzzy logic gain scheduling for the F/A-18 aircraft. Specially, fuzzy rules are utilized on-line to determine the denoralization factor(Κ) of a feedback fuzzy controller based on the dynamic pressure(Q) indicateing the region of the flight envelop the aircraft is operating in. Simulation results demonstrate that the proposed FLC provides excellent compensation for time-varying and/or nonlinear characteristics of the aircraft, and that it also exhibits satisfactory robustness with noisy air data sensors.