• Title/Summary/Keyword: aircraft part

Search Result 326, Processing Time 0.024 seconds

Basic Design of Composite Wing Box for Light Aircraft (소형 항공기 복합재 주익 구조의 기본 설계)

  • Park, Sang-Yoon;Doh, Hyun-Il;Hwang, Myoung-Sin;Eun, Hee-Bong;Choi, Won-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.74-81
    • /
    • 2004
  • In this study preliminary structural design has been performed to develop an all composite wing box for experimental aircraft(classified in FAR Part 21). Considerations on composite materials and their manufacturing process were taken into account throughout the design phase. Aerodynamic loads were estimated by using Shrenk method(NACA TM No 948) and FAR Part 23 Appendix A. The structural layout has been determined to carry effectively the critical loads and to maximize the benefit of composite structure. Maximum strain failure allowable and first ply failure criteria were applied for the sizing of major structural members. Finally, the designed composite wing box structure is presented in the form of drawings, which include material specifications, stacking sequences and joint design.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Study on EIA of Aircraft Noise II : Noise Assessment Improvement Plan (항공기소음의 환경영향평가에 관한 연구 II : 소음평가 개선방안)

  • Sun, Hyo-Sung;Park, Young-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.193-195
    • /
    • 2006
  • In order to minimize the influence of aircraft noise in the vicinity of domestic airports, the establishment of proper land-use plan according to the influence scope of aircraft noise in the opening part of preparing a housing site around domestic airports is needed. For the purpose of doing it, the environmental impact assessment accompanied by the accurate prediction of aircraft noise distribution is preceded, and this paper describes the improvement plan for performing the trustworthy environmental impact assessment of aircraft noise in the neighborhood of domestic airports.

  • PDF

A Study on the System Safety Assessment of Aircraft (항공기 시스템의 안전성 평가에 관한 연구)

  • Lee, Kyung-Chol;Lee, Jong-Hee;Yi, Baeck-Jun;Yoo, Seung-Woo
    • Journal of Applied Reliability
    • /
    • v.7 no.2
    • /
    • pp.89-100
    • /
    • 2007
  • For the certification of aircraft and part, it must be show the compliance with applicable requirements through system safety assessment. The safety assessment process should be planned and managed to provide the necessary assurance that all relevant failure conditions have been identified and that all significant combinations of failures which could cause those failure conditions have been considered. Complex systems, especially aircraft, should take into account any additional complexities and interdependencies which arise due to integration. In all cases involving integrated systems, the safety assessment process is of fundamental importance in establishing appropriate safety objectives for the system and determining that the implementation satisfies these objectives. This study review the safety assessment for the certification process of the aircraft engine system and analyze turbo-fan engine by fault analysis method for compliance with airworthiness requirement of aircraft engine system.

  • PDF

A Study on the Warning System of Aircraft for Obstacle Avoidance (지상장애물 회피를 위한 항공기 경고 시스템에 관한 연구)

  • Ham, Kwang-Keun;Choi, Jae-Duck;Huh, Uoong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.5 no.1
    • /
    • pp.65-79
    • /
    • 1997
  • In this study, we deviced side warning system that is necessary to the ground operation of aircraft. The system consist of obstacle detection part, transmission part, receive part, and warning part. We used TOF(Time Of Flight) method using 40kHz ultrasonic wave as the obstacle detection part. The 447MHz RF module was applied to the transmission and receive part. The warning part is activated by the computer using received distance data. The detection system attach to the left/right side edge of main wing and horizontal stabilizer. We have decided 10m obstacle detection range. The result of experiment was satisfactory.

  • PDF

Considering the Multi-Purpose Display Designed for Aircraft Lightning Protection (낙뢰보호를 고려한 항공기용 다목적 디스플레이 설계)

  • Cheon, Young-Ho;Lee, Seoung-Pil;Park, Jun-Hyeon
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.445-454
    • /
    • 2014
  • In this paper, we introduce measures designed content for RTCA DO-160 F, Section 22 tests performed to verify the effects of indirect lightning and testing process of the test was carried out in the multi-purpose display certification process. This is referred to as indirect effects of lightning capability of an aircraft having electrical electronic equipment failure or damage to bring lightning induced voltages. In order to protect the avionics from lightning indirect effects of these aircraft are analyzing the effects of lightning strikes on aircraft and aircraft systems and interior design needs protection against the threat on their part. In this paper, we introduce RTCA DO-160 F, component selection process according to Section 22 category selection method and the selected level for determining the level of such measures for protection against lightning of multipurpose display for this aircraft. It also introduces the actual test process to confirm that the designed effectiveness of the selected part. We expect a good example of the lightning planned for future development of measures designed avionics through each step of the process introduced this.

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part I: FE model establishment and validations

  • Liu, X.;Wu, H.;Qu, Y.G.;Xu, Z.Y.;Sheng, J.H.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.381-396
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part I, finite element (FE) models establishment and validations for both the aircrafts and NPP buildings are performed. (i) Airbus A320 and A380 aircrafts are selected as the representative medium and large commercial aircrafts, and the corresponding fine FE models including the skin, beam, fuel and etc. are established. By comparing the numerically derived impact force time-histories with the existing published literatures, the rationality of aircrafts models is verified. (ii) Fine FE model of the Chinese Zhejiang Sanao NPP buildings is established, including the detailed structures and reinforcing arrangement of both the containment and auxiliary buildings. (iii) By numerically reproducing the existing 1/7.5 scaled aircraft model impact tests on steel plate reinforced concrete (SC) panels and assessing the impact process and velocity time-history of aircraft model, as well as the damage and the maximum deflection of SC panels, the applicability of the existing three concrete constitutive models (i.e., K&C, Winfrith and CSC) are evaluated and the superiority of Winfrith model for SC panels under deformable missile impact is verified. The present work can provide beneficial reference for the integral aircraft crash analyses and structural damage assessment in the following two parts of this paper.

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

A Study on the air traffic control system of Korea Light Aircraft Carrier (한국형 경항공모함 항공관제체계에 대한 연구)

  • Choi, Youn-chul;Jung, Yong-tae;Cho, Young-jin
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.272-280
    • /
    • 2022
  • An aircraft carrier is a combat ship that acts as an aircraft base at sea and performs combat through aircraft mounted as a military ship operating the aircraft. The Navy proposed a 40,000-ton light aircraft carrier operation plan that could be equipped with vertical takeoff and landing fighter jets and helicopters around 2033, and based on this, this study examined the operation of aircraft control equipment among the aviation support systems required for operating light aircraft carriers in Korea. PriFly, TWR's ILARTS, ILM for airspace control, ASR, PAR, LAAS or RNAV, PALS (JPALS) for access control are required as essential equipment, and communication network and SCATT-16 are required along with URN-25 TACAN, ICLS (El/Az), ACLS OLS, MOVAS, IFLOLS, etc. This study consists of two parts, and part 2 will describe a specific control method on an aircraft carrier.