• Title/Summary/Keyword: aircraft measurement

Search Result 251, Processing Time 0.028 seconds

A Study on Effective Correction of Internal Drag and Wall Interference Using Response Surface in Wind Tunnel Test (풍동시험에서 반응면을 이용한 내부 항력 및 벽면 효과의 효율적 보정방안 연구)

  • Kim, Junemo;Lee, Yeongbin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.637-643
    • /
    • 2019
  • Wind tunnel testing for flow-through model is necessary for performance prediction of an aircraft with air-breathing jet engine. Internal drag correction and wall correction are performed to acquire preciser wind tunnel test data. Many test runs are generally required to correct internal drag and wall interference in wind tunnel test. In this study we investigated more effective correction schemes using the response surface method. Even though the number of tests required for these schemes was much smaller than that for conventional methods, the differences between corrections using these schemes and conventional methods were similar level with the uncertainty of measurement except for the data near the boundaries.

A Study on Development of On-line Condition Monitoring Program of a Turboshaft Engine (터보샤프트 엔진의 온라인 상태감시 프로그램 개발에 관한 연구)

  • Kong, Chang-Duk;Gu, Young-Joo;Kho, Seong-Hee;Ki, Ja-Young;Jun, Yong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.163-166
    • /
    • 2008
  • The helicopter flies at low level flight mode in its own operational range comparing to other aircraft categories. The low level flight means that the engine operates at variable atmospheric condition such as hot and cold temperature, snow, heavy rain, etc. Furthermore it may increase the entering possibility of engine foreign object damage particles like sand, dust, etc., i.e. this operating condition gives rise to damages of engine gas path components. An on-line condition monitoring program was developed by using SIMULINK, where measurement signals were simulated as an input module. The reliability and capability of the developed on-line condition monitoring were confirmed through application to a real helicopter engine health monitoring.

  • PDF

Research for Radar Signal Classification Model Using Deep Learning Technique (딥 러닝 기법을 이용한 레이더 신호 분류 모델 연구)

  • Kim, Yongjun;Yu, Kihun;Han, Jinwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.170-178
    • /
    • 2019
  • Classification of radar signals in the field of electronic warfare is a problem of discriminating threat types by analyzing enemy threat radar signals such as aircraft, radar, and missile received through electronic warfare equipment. Recent radar systems have adopted a variety of modulation schemes that are different from those used in conventional systems, and are often difficult to analyze using existing algorithms. Also, it is necessary to design a robust algorithm for the signal received in the real environment due to the environmental influence and the measurement error due to the characteristics of the hardware. In this paper, we propose a radar signal classification method which are not affected by radar signal modulation methods and noise generation by using deep learning techniques.

Runway visual range prediction using Convolutional Neural Network with Weather information

  • Ku, SungKwan;Kim, Seungsu;Hong, Seokmin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.190-194
    • /
    • 2018
  • The runway visual range is one of the important factors that decide the possibility of taking offs and landings of the airplane at local airports. The runway visual range is affected by weather conditions like fog, wind, etc. The pilots and aviation related workers check a local weather forecast such as runway visual range for safe flight. However there are several local airfields at which no other forecasting functions are provided due to realistic problems like the deterioration, breakdown, expensive purchasing cost of the measurement equipment. To this end, this study proposes a prediction model of runway visual range for a local airport by applying convolutional neural network that has been most commonly used for image/video recognition, image classification, natural language processing and so on to the prediction of runway visual range. For constituting the prediction model, we use the previous time series data of wind speed, humidity, temperature and runway visibility. This paper shows the usefulness of the proposed prediction model of runway visual range by comparing with the measured data.

Study on Lab-scale Production of Simulated e-Gasoline and Analysis of Spray Characteristics (모사 합성 가솔린 제조 및 분무 특성 분석 연구)

  • Jeonghyun Park;Naeun Choi;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.176-183
    • /
    • 2023
  • Many countries are striving to reduce carbon emissions with the goal of net zero by 2050. Accordingly, vehicles are rapidly being electrified to reduce greenhouse gases in the transportation sector. However, many organizations predict that internal combustion engines of LDV (light-duty vehicle) will exist even in 2050, and it is difficult to electrify aircraft and large ships in a short time. Therefore, synthetic fuel (i.e., e-Fuel) that can reduce carbon emissions and replace existing fossil fuels is in the spotlight. The e-Fuel refers to a fuel synthesized by using carbon obtained through various carbon capture technologies and green hydrogen produced by eco-friendly renewable energy. The purpose of this study is to compare and analyze the injection and spray characteristics of the simulated e-Gasoline. We mixed the hydrocarbon fuel components according to the composition ratio of the synthetic fuel produced based on the FT(Fischer-Tropsch) process. As a result of injection rate measurement, simulated e-Gasoline showed no significant difference in injection delay and injection period compared to standard gasoline. However, due to the low vapor pressure of the simulated e-Gasoline, the spray tip penetration (STP) was lower, and the size of spray droplets was larger than that of traditional gasoline.

A Study on Design of an Electromagnetic and Optical Characteristics in Transparent Conductor Coated Structures (투명 전도성 코팅체의 전자기적, 광학적 성능 설계 및 분석에 관한 연구)

  • Sung Sil Cho;Young Joon Yoon;Min Je Hwang;Kwang Sik Choi;Ic Pyo Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • In order to avoid the high observability due to the cavity resonance or electromagnetic wave leakages from the bridge of a battleship or the cockpit of an aircraft, this paper presents a transparent conductive oxide coated structure to prevent the incoming/outgoing electromagnetic waves. Currently, most of the RCS reduction technologies were focused on radar absorbing material such as paints based on conductive or magnetic materials in the fuselage, and there is not much research on countermeasures for achieving the low observability of materials that required optical transparency in actual weapon systems. In this study, the transmission/reflection and absorption performance of the ITO coated structure according to the change of the surface resistance of the transparent conductor were analyzed. Finally, the relationship between the electromagnetic and optical characteristics was established through fabrication and measurement.

Distributions and Behaviors of H2O2 Above the Yellow Sea in the Years Between 2002 and 2004 (2002년에서 2004년 동안 서해상공에서 관측된 과산화수소의 농도분포 및 거동)

  • Kim Y.M.;Shin S.A.;Han J.S.;Lee M.H.;Kim J.A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.689-697
    • /
    • 2005
  • Hydrogen peroxide is a reservoir of OH radical which is the powerful oxidant in the atmosphere. Therefore, the status of the oxidizing atmosphere could be reflected on the concentration of $H_{2}O_{2}$. In this study, the distribution of $H_{2}O_{2}$ was determined during the intensive aircraft measurements over the Yellow sea in March, December 2002, April, November 2003 and March, October 2004. Flights covered from $124^{circ}E\;to\;129^{circ}E\;and\;35^{circ}N\;to\;37^{circ}N$, and extending to 3,000 m. The flight patterns were set properly to assess the altitudinal and longitudinal distribution for $H_{2}O_{2}$. $H_{2}O_{2}$ was extracted onto aqueous solution using a continuously flowing glass coil and analyzed by a high performance liquid chromatography (HPLC) accompanied with a fluorescence detector using postcolumn enzyme derivatization. Mixing ratios of $O_{3},\;NO_{x}\;and\;SO_{2}$ were measured in real time by commercial analysis instruments. Along the heights, the maximum concentration of $H_{2}O_{2}$ appeared around 1,500 m then gradually decreased with increasing altitude. The vertical behavior of ozone showed the similar trend to $H_{2}O_{2}$. The mean mixing ratio of $NO_{x}$ was about 2 ppbv and not showed clear vertical distribution patterns. The mean value of was the same as $NO_{x}$ however $SO_{2}$ appeared extreme concentration in low altitude. $H_{2}O_{2}\;and\;O_{3}$ showed even longitudinal distribution however $NO_{x}$ mixing ratio in land ($127^{circ}E$) was much higher than over the sea. $SO_{2}$ rather decreased with increasing longitude. $H_{2}O_{2}$ was in inverse proportion to $NO_{x}$ in spring and summer and $SO_{2}$ in spring, which indicated its significant role to NO and $SO_{2}$ oxidation pathways.

The Study of Aerial Triangulation Using GPS (GPS를 이용한 사진기준점 측랑에 관한 연구)

  • 이재원;문두열;김정희;김진수
    • Spatial Information Research
    • /
    • v.12 no.2
    • /
    • pp.181-191
    • /
    • 2004
  • Nowadays, GPS-photogrammetry can be applied to the basemap production, a land register and NGIS. And from now on, as the increase of GPS receiver rate, the study on the interpolation methods considering the exact movement of an aircraft at photoflight and the study on the supplement of GPS defect by INS are required continuously. GPS-Photogrammetry, which are based on the direct measurement of the projection centers and attitude at the moment of camera exposure time through loading the GPS receiver in aircraft. This photogrammetric methods can of for us to acquire the exterior orientation parameters with only minimum ground control points, even the ground control process could be completely skipped. Consequently, we can drastically reduce the time and cost far the mapping process. In this thesis, two test flights were conducted in area to evaluate the performance of accuracy and efficiency through the analysis of results between the two photogrammetric methods, that is, traditional photograrammetry, GPS-Photogrammetry. Test results shows that a large variety of advantages of GPS-Photogrammetry against traditional photogrammetry is to be verified. Especially, the number of ground control points for the exterior orientation could be saved more than 70~80%, and the cost far map production 30~50%, respectively. In addition, it was convinced that the large reduction of control points has not any effect on the block accuracy.

  • PDF

Analysis Results in Technical Trends of 2018 Farnborough International Airshow via Centrality Analysis (중심성 분석을 이용한 2018년 판보로 국제 에어쇼 참가업체 기술동향 분석)

  • Hwang, Jae Gyo;Park, Jae Woo;Ko, Yong-Sin;Lee, Changbum;Hwang, Jae Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.164-173
    • /
    • 2019
  • The purpose of this research was to introduce a network analysis method for analyzing technology trends in the aerospace industry at the Farnborough International Airshow (FIA), one of the world's three major airshows. Civil and defense companies and government and military officials from 112 countries and 1,500 agencies convened at FIA 2018 to share and explore recent trends in the aerospace industry. We studied aerospace technologies from 45 countries, 1,108 exhibiters, and 223 technology categories via centrality analysis. The results from the network analysis showed that machining is the center of aerospace technology. However, there were quite different tendencies, depending on the region and country. The centers of aerospace technology are machining in Europe and the United Kingdom, aircraft components in Asia, and engine components/controls in the United States. In Korea, no one key technology was recognized, due to the country's small attendance. We hope this research will be conducive to aerospace technology-and-research planning, and that it will be an appropriate tool to help domestic manufacturers boost their exports.

Verification of Navigation System of Guided Munition by Flight Experiment (비행 실험을 통한 유도형 탄약 항법 시스템 검증)

  • Kim, Youngjoo;Lim, Seunghan;Bang, Hyochoong;Kim, Jaeho;Pak, Changho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.965-972
    • /
    • 2016
  • This paper presents results of flight experiments on a navigation algorithm including multiplicative extended Kalman filter for estimating attitude of the guided munition. The filter describes orientation of aircraft by data fusion with low-cost sensors where measurement update is done by multiplication, rather than addition, which is suitable for quaternion representation. In determining attitude from vector observations, the existing approach utilizes a 3-axis accelerometer as a 2-axis inclinometer by measuring gravity to estimate pitch and roll angles, while GNSS velocity is used to derive heading of the vehicle. However, during accelerated maneuvers such as coordinated flight, the accelerometer provides inadequate inclinometer measurements. In this paper, the measurement update process is newly defined to complement the vulnerability by using different vector observations. The acceleration measurement is considered as a result of a centrifugal force and gravity during turning maneuvers and used to estimate roll angle. The effectiveness of the proposed method is verified through flight experiments.