• Title/Summary/Keyword: aircraft impact

Search Result 317, Processing Time 0.022 seconds

Prediction of Airport noise Based on Flight path data (항적자료를 이용한 공항소음 피해 예측)

  • 민지훈;김정태;손정곤
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.792-799
    • /
    • 2000
  • Aircraft noise in the vicinity of Kimpo international airport has damaged to large number of people who live in communities. This paper investigates noise exposed area due to aircraft flight based on prediction modeling program INM and flight path data. Especially effect on route for aircraft has been considered. Ti also examines noise impact for various flight modes, such as a thrust cutback climb method.

  • PDF

Optimization of aircraft fuel consumption and reduction of pollutant emissions: Environmental impact assessment

  • Khardi, Salah
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.311-330
    • /
    • 2014
  • Environmental impact of aircraft emissions can be addressed in two ways. Air quality impact occurs during landings and takeoffs while in-flight impact during climbs and cruises influences climate change, ozone and UV-radiation. The aim of this paper is to investigate airports related local emissions and fuel consumption (FC). It gives flight path optimization model linked to a dispersion model as well as numerical methods. Operational factors are considered and the cost function integrates objectives taking into account FC and induced pollutant concentrations. We have compared pollutants emitted and their reduction during LTO cycles, optimized flight path and with analysis by Dopelheuer. Pollutants appearing from incomplete and complete combustion processes have been discussed. Because of calculation difficulties, no assessment has been made for the soot, $H_2O$ and $PM_{2.5}$. In addition, because of the low reliability of models quantifying pollutant emissions of the APU, an empirical evaluation has been done. This is based on Benson's fuel flow method. A new model, giving FC and predicting the in-flight emissions, has been developed. It fits with the Boeing FC model. We confirm that FC can be reduced by 3% for takeoffs and 27% for landings. This contributes to analyze the intelligent fuel gauge computing the in-flight fuel flow. Further research is needed to define the role of $NO_x$ which is emitted during the combustion process derived from the ambient air, not the fuel. Models are needed for analyzing the effects of fleet composition and engine combinations on emission factors and fuel flow assessment.

Impact Structural Behavior by Bird Strike on Engine Inlet Nacelle (엔진 흡입구 나셀의 조류 충돌에 대한 충격 거동 해석)

  • Kong, Chang-Duk;Lee, Seung-Hyeon;Park, Hyun-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.67-70
    • /
    • 2007
  • It is well known that the aircraft engine inlet should be safely designed against the bird strike at the aircraft development stage. The aircraft accident is increasing for FOD(Foreign Object Damage), especially bird of runway circumference. The aircraft accident due to bird strike brings about economic loss and which is connected with the life of passengers. In this study, MSC/DYTRAN has been utilized to analyze the aircraft engine inlet against the bird strike. In order to validate the proposed method for the bird strike analysis, this study was performed with comparison of precedence study results.

  • PDF

Impact Structural Behavior by Bird Strike on Engine Inlet Nacelle (엔진 흡입구 나셀의 조류충돌에 대한 충격거동 해석)

  • Kong, Chang-Duk;Lee, Seung-Hyeon;Park, Hyun-Bum;Yoon, Jae-Huy
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2007
  • It is well known that the aircraft engine inlet should be safely designed against the bird strike at the aircraft development stage. The aircraft accident is increasing for FOD(Foreign Object Damage), especially bird of runway circumference. The aircraft accident due to bird strike brings about economic loss which is connected with the life of passengers. In this study, MSC/DYTRAN has been utilized to analyze the aircraft engine inlet against the bird strike. In order to validate the proposed method for the bird strike analysis, this study was performed with comparison of precedence study results.

A Study on the Evaluation Metric of a Civil Aircraft Noise (민간항공기 소음평가 단위에 관한 연구)

  • Lee, Jun-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.503-513
    • /
    • 2006
  • The duration time of aircraft noise event is also an important factor for the evaluation of civil aircraft noise, which is considered as a notable characteristic of military aircraft noise. SEL is proved as a suitable noise metric for the measuring military aircraft noise of various flight pattern considering the duration time of noise event. This study reviews whether SEL is a suitable for measuring civil aircraft noise and study shows SEL is fairly compensating the duration time of civil aircraft noise event for the evaluation of aircraft noise. Noise metric for the evaluation aircraft noise based on SEL is more appropriate than based on $L_{MAX}$ for compensating duration time of noise event either military aircraft or civil aircraft. In this reason, current formula of WECPNL based on energy average of measured $L_{MAX}$ for the evaluation of aircraft noise impact in 'Test Method of Noise and Vibration of Korea' is recommended to be amended to formula of WECPNL based on energy average of measured SEL considering compensation of noise event duration time, if WECPNL is not based on measured EPNL, a metric compensating duration time.

Analysis of Crashworthiness Characteristics of a Regional Aircraft Fuselage using an Explicit Finite Element Method (외연적 유한요소기법을 활용한 리저널급 항공기 동체 내추락 특성 분석)

  • Park, Ill-Kyung;Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1070-1079
    • /
    • 2012
  • The impact energy absorbing is a very important characteristic of an aircraft to enhance the survivability of occupants when an aircraft is under the survivable accident such as an emergency landing condition. The impact energy is generally transmitted into the occupant and absorbed through a landing gear, a subfloor (lower structure of fuselage), and a seat. The characteristic of crash energy absorbing of a subfloor depends on the type of an aircraft, a shape of structure, and an applied material. Therefore, the study of crashworthiness characteristics of a subfloor structure is very important work to improve the safety of an aircraft. In this study, a finite element model of a narrow body fuselage section for the 80~90 seats regional aircraft was developed and crash simulation was executed using an explicit finite element analysis. Through survey of the impact energy distribution of each structural part of a fuselage and floor-level acceleration response, the crashworthiness characteristics and performance was evaluated.

Impact test of a centrifugal pump used in nuclear power plant under aircraft crash scenario

  • Huang, Tao;Chen, Mengmeng;Li, Zhongcheng;Dong, Zhanfa;Zhang, Tiejian;Zhou, Zhiguang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1858-1868
    • /
    • 2021
  • Resisting an accidental impact of large commercial aircrafts is an important aspect of advanced nuclear power plant (NPP) design. Especially after the 9·11 event, some regulations were enacted, which required the design of NPPs should consider the accidental impact of large commercial aircrafts. Normal working of equipment is important for stopping reactor under an impact when an NPP is in operation. However, there is a lack of reliable analysis and research on the impact test of nuclear prototype equipment. Therefore, in order to study the response of the equipment under high acceleration impact, a centrifugal pump is selected as the research object to perform the impact test. A horizontal half-sinusoidal pulse wave was applied to the working pump. The test results show that the horizontal response of the motor and flange is greater compared to other parts, as well as the vertical response of the coupling. The stress response of the pump body support and motor support is high, hence these parts should be considered in the design of the pump. Finally, combined with the damage and stress evaluation results of the pump under different amplitudes, the ultimate impact acceleration that the pump can withstand is given.

Design criteria for birdstrike damage on windshield

  • Marulo, Francesco;Guida, Michele
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.233-251
    • /
    • 2014
  • Each aircraft have to be certified for a specified level of impact energy, for assuring the capability of a safe flight and landing after the impact against a bird at cruise speed. The aim of this research work was to define a scientific and methodological approach to the study of the birdstrike phenomenon against several windshield geometries. A series of numerical simulations have been performed using the explicit finite element solver code LS-Dyna, in order to estimate the windshield-surround structure capability to absorb the bird impact energy, safely and efficiently, according to EASA Certification Specifications 25.631 (2011). The research considers the results obtained about a parametric numerical analysis of a simplified, but realistic, square flat windshield model, as reported in the last work (Grimaldi et al. 2013), where this model was subjected to the impact of a 1.8 kg bird model at 155 m/s to estimate the sensitivity of the target geometry, the impact angle, and the plate curvature on the impact response of the windshield structure. Then on the basis of these results in this paper the topic is focused about the development of a numerical simulation on a complete aircraft windshield-surround model with an innovative configuration. Both simulations have used a FE-SPH coupled approach for the fluid-structure interaction. The main achievement of this research has been the collection of analysis and results obtained on both simplified realistic and complete model analysis, addressed to approach with gained confidence the birdstrike problem. Guidelines for setting up a certification test, together with a design proposal for a test article are an important result of such simulations.

Safety assessment of generation III nuclear power plant buildings subjected to commercial aircraft crash part III: Engine missile impacting SC plate

  • Xu, Z.Y.;Wu, H.;Liu, X.;Qu, Y.G.;Li, Z.C.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.417-428
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part III, the local damage of the rigid components of aircraft, e.g., engine and landing gear, impacting the steel concrete (SC) structures of NPP containment is mainly discussed. Two typical SC target panels with the thicknesses of 40 mm and 100 mm, as well as the steel cylindrical projectile with a mass of 2.15 kg and a diameter of 80 mm are fabricated. By using a large-caliber air gas gun, both the projectile penetration and perforation test are conducted, in which the striking velocities were ranged from 96 m/s to 157 m/s. The bulging velocity and the maximal deflection of rear steel plate, as well as penetration depth of projectile are derived, and the local deformation and failure modes of SC panels are assessed experimentally. Then, the commercial finite element program LS-DYNA is utilized to perform the numerical simulations, by comparisons with the experimental and simulated projectile impact process and SC panel damage, the numerical algorithm, constitutive models and the corresponding parameters are verified. The present work can provide helpful references for the evaluation of the local impact resistance of NPP buildings against the aircraft engine.

Investigation of Ice Impacts on Aluminum Skin Structure (알루미늄 표피 구조의 Ice 충돌 특성에 관한 연구)

  • Park, Gyu Cheol;Myeong, No Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.110-116
    • /
    • 2003
  • With the growth of aircraft performance and needs for light aircraft, the problems associated with hail impacts on aircraft during flights and grounding become and important issue. These hail encounters can cause severe damages to aircraft and result in major concerns in safety and cost. Since nearly all external components of the commercial and military aircraft-in particular, the nose section and the leading edge of the wing and tail-are subject to damages, much effort has been put into understanding of this problem. However, most of the previous studies have focused on the composite components and few results have been reported for the metallic components. In this paper, we study the ice impacts on the aluminum component with the finite element analysis method utilizing commercial non-linear dynamics solver LS-DYNA. The results are compared with the experimental data and a simple measure of the ice impact effects is proposed.