• 제목/요약/키워드: aircraft fuselage

검색결과 99건 처리시간 0.026초

항공기 착륙 수직 가속도 이벤트 통계적 분석 연구 (Research on Statistical Analysis of Vertical Acceleration Events during Aircraft Landing)

  • 전제형;김현덕
    • 한국항공운항학회지
    • /
    • 제32권2호
    • /
    • pp.135-141
    • /
    • 2024
  • Despite the innovative technological advances in the aviation industry, hard landing events that occur during aircraft landing account for 13% of all accidents. Hard landing when landing an aircraft affects normal operation by generating a large load on the landing gear and the fuselage. In order to identify these risk factors, the airline monitors the high vertical acceleration event, a precursor to hard landing, through QAR (Quick Access Recorder) flight data analysis, and prepares and implements mitigation measures. In this study, it is intended to contribute to safety management based on flight data analysis that identifies the characteristics of high vertical acceleration G event data that can cause such hard landing and detailed parameters of precursor signs, and to identify the causal relationship of the occurrence of the event by applying statistical analysis methods such as variance analysis, correlation analysis, and regression analysis models to identify the characteristics of the event occurrence and eliminate the cause in advance.

복합 자이로플레인의 한계 속도에 대한 탐색연구(1) : 로터와 기체의 공력해석 (An Exploratory Study on the Speed Limit of Compound Gyroplane(1) : Aerodynamic Analysis of Rotor and Airframe)

  • 신병준;김학윤
    • 한국항공우주학회지
    • /
    • 제43권11호
    • /
    • pp.971-977
    • /
    • 2015
  • 복합 자이로플레인의 전진 비행 성능해석을 수행하였다. 자동회전하는 로터의 성능을 해석하기 위하여 과도모사법(Transient Simulation Method)을 이용하였으며 비행 속도 증가에 따른 동체의 공력 성능 변화를 확인하기 위해 동체에 대한 수치해석을 수행하였다. 주어진 속도와 샤프트각, 그리고 콜렉티브 피치 조건에서 준 정상 자동회전 상태를 판정하고 로터의 성능 변화를 관찰하였다. 성능해석 결과 속도가 증가함에 따라 동체의 형상에 따른 공력특성이 미치는 영향이 커지는 것으로 나타났으며 고속으로 비행하기 위해서는 유선형의 동체가 필수적이고 전진 속도 한계는 로터의 자동회전 성능에 종속적이었다.

Passive suppression of helicopter ground resonance instability by means of a strongly nonlinear absorber

  • Bergeot, Baptiste;Bellizzi, Sergio;Cochelin, Bruno
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.271-298
    • /
    • 2016
  • In this paper, we study a problem of passive suppression of helicopter Ground Resonance (GR) using a single degree freedom Nonlinear Energy Sink (NES), GR is a dynamic instability involving the coupling of the blades motion in the rotational plane (i.e. the lag motion) and the helicopter fuselage motion. A reduced linear system reproducing GR instability is used. It is obtained using successively Coleman transformation and binormal transformation. The analysis of the steadystate responses of this model is performed when a NES is attached on the helicopter fuselage. The NES involves an essential cubic restoring force and a linear damping force. The analysis is achieved applying complexification-averaging method. The resulting slow-flow model is finally analyzed using multiple scale approach. Four steady-state responses corresponding to complete suppression, partial suppression through strongly modulated response, partial suppression through periodic response and no suppression of the GR are highlighted. An algorithm based on simple criterions is developed to predict these steady-state response regimes. Numerical simulations of the complete system confirm this analysis of the slow-flow dynamics. A parametric analysis of the influence of the NES damping coefficient and the rotor speed on the response regime is finally proposed.

항공기용 하니콤 트림판넬의 다채널 능동제어 (Multichannel Active Control of Honeycomb Trim Panels for Aircrafts)

  • 홍진숙
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

더미 및 실 블레이드 안테나 조류충돌 해석 및 시험 (Bird Strike Analysis and Test Report of Dummy and Real Blade Antenna)

  • 정한의
    • 항공우주시스템공학회지
    • /
    • 제12권5호
    • /
    • pp.24-31
    • /
    • 2018
  • 항공기의 블레이드 안테나에 대해 더미와 실 안테나의 조류충돌 해석과 시험을 수행하였다. 해석에서 조류는 SPH(Smooth Particle Hydrodynamics) 방법을 이용하여 모델링하였으며, 유체-구조 연성해석 (FSI, Fluid-Structure Interaction) 기법으로 조류와 안테나, 기체 체결부의 거동을 시뮬레이션 하였다. 실제 조류를 사용한 시험을 수행하여 안테나와 동체 사이의 체결부 손상 및 이탈여부를 확인하였으며, 항공기 기체의 구조건전성과 해석 및 시험 결과 사이의 상관성이 있음을 입증하였다.

Design validation of a composite crash absorber energy to an emergency landing

  • Guida, Michele;Marulo, Francesco;Bruno, Massimiliano;Montesarchio, Bruno;Orlando, Salvatore
    • Advances in aircraft and spacecraft science
    • /
    • 제5권3호
    • /
    • pp.319-334
    • /
    • 2018
  • In this study, the failure mode and energy absorption capabilities of a composite shock absorber device, during an emergency landing are evaluated. The prototype has been installed and tested in laboratory simulating an emergency landing test condition. The crash absorber presents an innovative configuration able to reduce the loads transmitted to a helicopter fuselage during an emergency landing. It consists of a composite tailored tube installed on the landing gear strut. During an emergency landing this crash absorber system should be able to absorb energy through a pre-designed deformation. This solution, compared to an oleo-pneumatic shock absorber, avoids sealing checks, very high values of the shock absorber pressure, and results to be lighter, easy in maintenance, inspect and use. The activities reported in this paper have become an attractive research field both from the scientific viewpoint and the prospect of industrial applications, because they offer benefits in terms of energy absorbing, weight savings, increasing the safety levels, and finally reducing the costs in a global sense.

Numerical analysis of the effect of V-angle on flying wing aerodynamics

  • Zahir Amine;Omer Elsayed
    • Advances in aircraft and spacecraft science
    • /
    • 제10권2호
    • /
    • pp.141-158
    • /
    • 2023
  • In current research work, the aerodynamics performance of a newly designed large flying V aircraft is numerically investigated. Three Flying V configurations, with V-angles of 50°, 70° and 90° that represent the minimum, moderate, and maximum configurations respectively, were designed and modeled to assess their aerodynamic performance at cruise flight conditions. The unstructured mesh was developed using ICEM CFD and Ansys-Fluent was used as an aerodynamic solver. The developed models were numerically simulated at cruise flight conditions with a Mach number equal to 0.15. K-ω SST turbulence model was chosen to account for flow turbulence.The authors performed steady flow simulations.The results obtained from the experimentation reveal that the maximum main angle configuration of 90° had the highest CLmax value of 0.46 compared to other configurations. While the drag coefficient remained the same for all three configurations, the 50° V-angle configuration achieved the maximum stall angle of 35°. With limited stall delay benefits, the flying V possesses no sufficient stability, due to the flow separation detected at whole elevon and winglet suction side areas at AoA equal and higher than 30°.

예비압입에 의한 알루미늄 2024-T3 알클래드 합금의 균열성장 지연거동 (Crack Growth Retardation Behavior in Aluminium 2024-T3 Alclad Alloy by Pre-Indentation)

  • 황정선;조환기
    • 한국군사과학기술학회지
    • /
    • 제4권2호
    • /
    • pp.42-51
    • /
    • 2001
  • The effects of pre-indentation technique are presented for A12024-T3 Alclad alloy using as skin material for aircraft fuselage and wing. Indentations were applied to specimens to be placed on the presumed path of fatigue crack growth before fatigue tests. Tension-tension fatigue tests were conducted on the edge cracked specimens in the L-T orientation. Test results were analyzed to investigate the effectiveness of pre-indentation with the variation of specimen's thickness, position of indentation and applied maximum stress. Fatigue crack retardation by pre-indentation is well recognized in the various conditions.

  • PDF

소형항공기의 화재방지 요건 및 시험에 관한 연구 (A Study on Fire Prevention Requirements and Tests for Small Aircraft)

  • 유승우;진영권
    • 항공우주시스템공학회지
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2011
  • The goal of fire prevention research is to eliminate fires as a cause of fatal accidents and there are two main areas of research. One is to prevent flame propagation during in-flight and it addresses fire hazards. The other is to minimize the possibility of flame penetration or fuselage burn-through and it aims toward post-crash survival include crash protection, emergency evacuation and post-evacuation survival. Civil aviation authorities world-wide are trying to identify threats and measure performance for fire prevention. The results of research are standardized and given as general directions of test methods. This paper has prepared to study and present the means of compliance to the fire prevention requirements and applicable test methods.

아음속 확산형 S-덕트 최적 설계에 관한 연구 (Study of Subsonic Diffusing S-Duct Design Optimization)

  • 김수환;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.121-126
    • /
    • 2002
  • Aircraft propulsion systems often use diffusing S-duct to convey air flow from the wing or fuselage intake to the engine compressor, Well designed S-duct should incur minimal total pressure losses and deliver nearly uniform flow with small transverse velocity components at the engine compressor entrance. Reduced total pressure recovery lowers propulsion efficiency and nonuniform flow conditions at the engine face lower engine stall limits. In this study, S-duct which has maximum total pressure recovery and nearly uniform flow profiles at the compressure intake should be found using design optimization methods with 3-dimensional Wavier-Stokes analyses.

  • PDF