• 제목/요약/키워드: aircraft conceptual design

검색결과 67건 처리시간 0.028초

Adaptable conceptual aircraft design model

  • Fioriti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.43-67
    • /
    • 2014
  • This paper presents a new conceptual design model ACAD (Adaptable Conceptual Aircraft Design), which differs from the other models due to its considerable adaptability to the different classes of aircraft. Another significant feature is the simplicity of the process which leads to the preliminary design outputs and also allowing a substantial autonomy in design choices. The model performs the aircraft design in terms of total weight, weight of aircraft subsystems, airplane and engine performances, and basic aircraft configuration layout. Optimization processes were implemented to calculate the wing aspect ratio and to perform the design requirements fulfillment. In order to evaluate the model outcomes, different test cases are presented: a STOL ultralight airplane, a new commuter with open-rotor engines and a last generation fighter.

Design space exploration in aircraft conceptual design phase based on system-of-systems simulation

  • Tian, Yifeng;Liu, Hu;Huang, Jun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.624-635
    • /
    • 2015
  • Design space exploration has been much neglected in aircraft conceptual design phase, which often leads to a waste of time and cost in design, manufacture and operation process. It is necessary to explore design space based on operational system-of-systems (SoS) simulation during the early phase for a competitive design. This paper proposes a methodology to analyze aircraft performance parameters in four steps: combination of parameters, object analysis, operational simulation, and key-parameters analysis. Meanwhile, the design space of an unmanned aerial vehicle applied in earthquake search and rescue SoS is explored based on this methodology. The results show that applying SoS simulation into design phase has important reference value for designers on aircraft conceptual design.

Development of a multidisciplinary design optimization framework for an efficient supersonic air vehicle

  • Allison, Darcy L.;Morris, Craig C.;Schetz, Joseph A.;Kapania, Rakesh K.;Watson, Layne T.;Deaton, Joshua D.
    • Advances in aircraft and spacecraft science
    • /
    • 제2권1호
    • /
    • pp.17-44
    • /
    • 2015
  • A modular multidisciplinary analysis and optimization framework has been built with the goal of performing conceptual design of an advanced efficient supersonic air vehicle. This paper addresses the specific challenge of designing this type of aircraft for a long range, supersonic cruise mission with a payload release. The framework includes all the disciplines expected for multidisciplinary supersonic aircraft design, although it also includes disciplines specifically required by an advanced aircraft that is tailless and has embedded engines. Several disciplines have been developed at multifidelity levels. The framework can be readily adapted to the conceptual design of other supersonic aircraft. Favorable results obtained from running the analysis framework for a B-58 supersonic bomber test case are presented as a validation of the methods employed.

신속한 항공기 개발을 위한 통합 개념설계 프로세스에 대한 연구 (Advanced Design Synthesis Process for Rapid Aircraft Development)

  • 박승빈;박진환;전권수;김상호;이재우
    • 시스템엔지니어링학술지
    • /
    • 제9권2호
    • /
    • pp.83-90
    • /
    • 2013
  • Integrated aircraft synthesis process for rapid analysis and design is described in this paper. Data flow between different analysis fields is described in details. All the data are divided into several groups according to importance and source of the data. Analysis of design requirements and certification regulations is carried out to determine baseline configuration of an aircraft. Overall design process can be divided into initial sizing, conceptual and preliminary design phases. Basic data for conceptual design are obtained from initial sizing, CAD and geometry analysis. Basic data are required input for weight, aerodynamics and propulsion analyses. Results of this analysis are used for stability and control, performance, mission, and load analysis. Feasibility of design is verified based on analysis results of each discipline. Design optimization that involves integrated process for aircraft analysis is performed to determine optimum configuration of an aircraft on a conceptual design stage. The process presented in this paper was verified to be used for light aircraft design.

항공안전인증을 고려한 소형제트항공기 플랩 재설계 (Re-Design of Wing Flap for Very Light Jet Aircraft Incorporating Airworthiness Certification)

  • 윤정원;이효진;이재우;김상호;변영환;김임권
    • 한국항공운항학회지
    • /
    • 제19권3호
    • /
    • pp.1-9
    • /
    • 2011
  • In this paper, a conceptual design process for Very Light Jet aircraft has been proposed incorporating aircraft safety certification. During the proposed design process, satisfaction of the airworthiness certification for an intermediate resulting aircraft configuration is evaluated and then redesigns are carried out if necessary and until the designed aircraft configuration satisfies the airworthiness requirements. Certification database has been developed using FAR 23, AC 23, KAS 23, and CS 23 as the airworthiness certification. Based on the developed certification database Design Certifcation Related Table has been produced to use the airworthiness requirements as design constraints in the propsed design process. Using Quality Function Deployment the design variables for a redesign are carefully selected and a design optimization is performed. To demonstrate the feasibility and effectiveness of rapid aircraft conceptual design using the proposed approach, a Very Light Jet design optimization including a redesign of wing flap has been performed and the design results have been presented.

Photogrammetry-based reverse engineering method for aircraft airfoils prediction

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • 제8권4호
    • /
    • pp.331-344
    • /
    • 2021
  • Airframe internal and external specifications are the product of intensive intellectual efforts and technological breakthroughs distinguishing each aircraft manufacturer. Therefore, geometrical information characterizing aircraft primary aerodynamic surfaces remain classified. When attempting to model real aircraft, many members of the aeronautical community depend on their personal expertise and generic design principles to bypass the confidentiality obstacles and sketch real aircraft airfoils, which therefore vary for the same aircraft due to the different designers' initial assumptions. This paper presents a photogrammetric shape prediction method for deriving geometrical properties of real aircraft airframe by utilizing their publicly accessible static and dynamic visual content. The method is based on extracting the visually distinguishable curves at the fairing regions between aerodynamic surfaces and fuselage. Two case studies on B-29 and B-737 are presented showing how to approximate the sectional coordinates of their wing inboard airfoils and proving the good agreement between the geometrical and aerodynamic properties of the replicated airfoils to their original versions. Therefore, the paper provides a systematic reverse engineering approach that will enhance aircraft conceptual design and flight performance optimization studies.

A CAI system for conceptual design of aircraft

  • Murotsu, Yoshisada;Tsujio, Showzow;Park, Choong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1633-1638
    • /
    • 1991
  • A CAI system is developed to support the Instruction of an aircraft conceptual design for aeronautical engineering students. Three system concepts are proposed and an Object-Oriented approach is applied to construct the system. The system has three major functions to perform a conceptual design: (1) the system stores modular data and empirical formulas used for a wide range of aircraft design tasks from light aircraft to long range airliners. (2) Implementation of modules by message passing makes it easy to realize the various design tasks required for different design requirements. (3) The system allows users to study trade-off among the requirements. The system has a graphical user Interface which allows users to communicate with the system interactively. The effectiveness of the system Is demonstrated through some case studies.

  • PDF

Aircraft derivative design optimization considering global sensitivity and uncertainty of analysis models

  • Park, Hyeong-Uk;Chung, Joon;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권2호
    • /
    • pp.268-283
    • /
    • 2016
  • Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, RBDO, and PBDO results for given requirements.

교육용 소형 항공기의 형상 모델링과 공력 분석에 관한 연구 (A Study on the Configuration Modeling and Aerodynamic Analysis of Small Airplanes for Flight Training)

  • 조환기
    • 한국항공운항학회지
    • /
    • 제28권1호
    • /
    • pp.59-65
    • /
    • 2020
  • This paper presents comparative results of configuration modeling and aerodynamic analysis to single-engine airplanes such as C-172, SR-20, and DA40NG. The software OpenVSP was used as an airplane configuration modeling tool. OpenVSP can provide the fastest method to get three-dimensional aircraft configuration from given basic data and drawings of aircraft. Parametric design input in OpenVSP, from given aircraft geometric parameters, was applied to small airplanes mentioned. New aircraft models in this study were reversely designed to coincide with the publicly obtained dimensions of the original aircraft. The basic aerodynamic analysis of newly designed modeling aircraft was performed by the vortex lattice method. Results are shown that the similarity of aerodynamic data obtained except for the lack of DA40NG. In conclusion, the modeling process applied to this work is valuable to obtain conceptual design insight in the reverse design from the small airplanes currently in use for flight training.

Propulsion System Modeling and Reduction for Conceptual Truss-Braced Wing Aircraft Design

  • Lee, Kyunghoon;Nam, Taewoo;Kang, Shinseong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.651-661
    • /
    • 2017
  • A truss-braced wing (TBW) aircraft has recently received increasing attention due to higher aerodynamic efficiency compared to conventional cantilever wing aircraft. For conceptual TBW aircraft design, we developed a propulsion-and-airframe integrated design environment by replacing a semi-empirical turbofan engine model with a thermodynamic cycle-based one built upon the numerical propulsion system simulation (NPSS). The constructed NPSS model benefitted TBW aircraft design study, as it could handle engine installation effects influencing engine fuel efficiency. The NPSS model also contributed to broadening TBW aircraft design space, for it provided turbofan engine design variables involving a technology factor reflecting progress in propulsion technology. To effectively consolidate the NPSS propulsion model with the TBW airframe model, we devised a rapid, approximate substitute of the NPSS model by reduced-order modeling (ROM) to resolve difficulties in model integration. In addition, we formed an artificial neural network (ANN) that associates engine component attributes evaluated by object-oriented weight analysis of turbine engine (WATE++) with engine design variables to determine engine weight and size, both of which bring together the propulsion and airframe system models. Through propulsion-andairframe design space exploration, we optimized TBW aircraft design for fuel saving and revealed that a simple engine model neglecting engine installation effects may overestimate TBW aircraft performance.