• 제목/요약/키워드: airborne particulate matter

검색결과 98건 처리시간 0.024초

지표대기 미세먼지 정화를 위한 식물체 음이온 발생량 분석 및 음이온의 미세먼지 기대정화지수 평가 (Evaluation on the Expected Purification Efficiency of Air Ion and Analysis on the Generated Amount of Negative Air Ions by Plants for the Purification of Particulate Matter in Air)

  • 오득균;주진희
    • 한국환경과학회지
    • /
    • 제29권6호
    • /
    • pp.623-631
    • /
    • 2020
  • This study analyzes the effect of negative air ions on the concentration of airborne particulate matter and evaluates the expected purification efficiency of open spaces for particulate matter by investigating the amount of negative air ions generated by plants. This study establishes a negative air ion generation treatment environment, plant environment, and control environment to measure the purification efficiency of particulate matter under the conditions of each, analyzing the expected purification efficiency by designing a particulate matter purification model. Results show that the amount of generated negative air ion according to environment was negative air ion generation treatment environment > plant environment > control environment; this order also applies to the particulate matter purification efficiency. Moreover, it took 65 min for the negative ion generation treatment environment, 90 min for the plant environment, and 240 min for the control environment to reach the standard expected purification efficiency of particulate matter concentration of 960 mg/㎥ for PM10. For PM2.5, with the designated maximum concentration of 700 mg/㎥, it took 60 min for the negative ion generation treatment environment, 80 min for the plant environment, and more than 240 min for the control environment. Based on these results, the expected purification efficiency compared to the control environment was quadrupled in the negative ion generation treatment environment and tripled in the plant environment on average.

부산 도심지역 대기중 입자상물질의 크기분포에 따른 수용성 이온성분의 특성 (Size Distribution Characteristics of Water-soluble Ionic Components in Airborne Particulate Matter in Busan)

  • 박기형;이병규
    • 한국대기환경학회지
    • /
    • 제31권3호
    • /
    • pp.287-301
    • /
    • 2015
  • This study was conducted to investigate size distribution characteristics of water-soluble ionic components in the airborne particulate matter (PM) collected from an urban area in Busan using a MOUDI cascade impactor from March to October 2010. The inorganic constituents in the fine particles (${\leq}1.8{\mu}m$) predominantly consisted of sulfate, nitrate, ammonium, and potassium. Sulfate and ammonium concentrations showed a high correlation and similar equivalent concentrations in the fine modes including $0.18{\sim}0.32{\mu}m$, $0.32{\sim}0.56{\mu}m$, and $0.56{\sim}1.0{\mu}m$. This indicates that the main chemical component in the fine particles would be forms of ammonium sulfate such as $(NH_4)_3H(SO_4)_2$, $(NH_4)_2SO_4$, and $(NH_4)HSO_4$. Back trajectory analysis showed that relatively higher concentrations of ammonium, nitrate, and sulfate in the fine mode, compared to the coarse mode, are caused both by domestic sources and long-range transports originated from China continent. High concentration episodes of PM both in the fine mode and the coarse mode were attributed both by anthropogenic sources, such as ship emissions and traffic emissions, and by natural sources such as seawater (sea salt), respectively.

중성자 방사화분석법과 Gent SFU 샘플러를 이용한 도시의 농촌지역의 대기분지($PM_{10}$)관측 연구 (Study on Airborne Particulate Matter ($PM_{10}$) Monitoring in Urban and Rural Area by Using Gent SFU Sampler and Instrumental Neutron Activation Analysis)

  • 정용삼;문종화;김선하;박광원;강상훈
    • 한국대기환경학회지
    • /
    • 제16권5호
    • /
    • pp.453-467
    • /
    • 2000
  • The aim of this research is to collect and characterize fine particles (FPM:$\leq$2.5${\mu}{\textrm}{m}$) and coarse particles (CPM: 2.5~10${\mu}{\textrm}{m}$) using a low volume air sampler provided by the IAEA, at urban (Taejon) and rural area(Wonju) for a period of about two years(April 1996 to May 1998) and to promote a use of nuclear analytical techniques for air pollution studies. For the collection of airborne particulate matter (PM(sub)10), the Gent stacked filter unit sampler and polycarbonate membrane filters were employed. The concentration of trace elements in collected APM samples were determined byu instrumental Neutron Activation Analysis. For validation of the analytical data, internal quality control were implemented by using both the comparison of the analytical results of standard reference materials(NIST SRM 1648) and interlaboratory comparison for proficiency test (NAT-3). The standard uncertainty was less than 15% and Z-score of two samples were within $\pm$1. The monitoring of (PM(sub)10) mass concentration and elemental concentrations were carried out weekly. The average mass concentration of (PM(sub)10) in urban and rural areas were 59.2$\pm$36.5$\mu\textrm{g}$/㎥ and 41.4$\pm$23.7$\mu\textrm{g}$/㎥, respectively. To investigate the emission source, the enrichment factors were calculated for the fine and coarse particle fractions at two sites, respectively and these values were classified for anthropogenic and soil origin elements.

  • PDF

대기 중 납의 농도를 조절하는 요인에 대한 고찰 (Some Speculations on Mechanisms Controlling the Concentrations of Airborne Lead in the Atmosphere)

  • 김기현;김동술;이태정
    • 한국대기환경학회지
    • /
    • 제13권2호
    • /
    • pp.171-174
    • /
    • 1997
  • To provide better insights into the factors and processes regulating the geochemical behavior of airborne lead (Pb), we have investigated several important aspects of its distribution characteristics using the data collected from the Kyung Hee University-Suwon Campus during 1989 through 1994. Although the Pb data in the area reflected the effects of many anthropogenic activities ongoing in the area, the data were quite useful to assess the geochemical facets affecting the temporal distributions of lead as well as particulate matter (PM). The analysis of these data indicated that the Pb patterns were characteristic of enriched Pb levels during odd-numbered years relative to even-numbered years, while those of PM were exhibiting pronouncingly different patterns. Despite many similarities and differences found between year-to-year distribution patterns, of Pb data, it was possible to discuss the facts associated with relatively high concentrations in the years 1991 and 1993 via normalization of Pb against PM data. According to this procedure, we were able to conclude that relative enrichment in Pb levels during 1991 was due to enhanced input of PM, while that of the year 1993 came from more chemically-oriented processes such as active adsorptive scavenging of Pb onto the PM surface. Based on our comparative analysis of the size-fractionated PM and Pb data sets, we propse that two distinctive mechanisms that are both of phyical (1991) and chemical nature (1993) exerted controls over the observed distribution patterns of airborne Pb in the atmosphere of Suwon.

  • PDF

INAA.ICP.AAS를 이용한 대기먼지 $(PM_{10})$의 다원소분석 (Multielement Analysis in Airborne Particulate Matter $(PM_{10})$ by INAA, ICP and AAS)

  • 정용삼;문종화;정영주;박광원;이길용;윤윤열;심상권;조경행;한명섭
    • 한국대기환경학회지
    • /
    • 제15권4호
    • /
    • pp.495-503
    • /
    • 1999
  • Airborne particulate matter $(PM_{10})$ collected using high volume air sampler and silica fiber filter were analyzed by Instrumental Neutron Activation Analysis(INAA), Inductively Coupled Plasma Atomic Emission Spectrometry(ICP-AES) and Atomic Absorption Spectrometry(AAS), and the results were compared with each other. 30~40 trace elements in environmental standard reference materials(NIST SRM 1648 and NIES CRM No.8) were analyzed for the analytical quality control. The relative error for two-third of elements detected was less than 10%, and the standard deviation was less than 15%. During the sampling period for 24 hours, the mass concentration of total suspended particulate was 36.1$\mu\textrm{g}$/㎥ and the value is lower than the critical level in Korea. In the results of NAA, the elements of Al, As, Ba, Fe, La, Mg, Na, Sb, Zn were well agreed with those of other methods. In statistical estimation between different methods, the deviation of Al, Ba, Cr, Fe was less than 10% and quite reliable.

  • PDF

입자 발생 챔버를 이용한 Andersen과 총분진 시료채취기의 특성 비교 (Characteristic comparison of Andersen and total suspended particulate samplers in a particulate matter generation chamber)

  • 박주면
    • 한국산업보건학회지
    • /
    • 제18권3호
    • /
    • pp.177-184
    • /
    • 2008
  • The purpose of this study was to compare the performance characteristics of Andersen and total suspended particulate (TSP) samplers in terms of particle size distribution (PSD) and mass sampling efficiency. In the present study, two Andersen and four TSP samplers were selected and tested to quantitatively estimate human exposure to fly ash representing industrial particulate matter (PM) in a carefully controlled chamber. The PSD characteristics, a mass median aerodynamic diameter and a geometric standard deviation, were found from the sampled PM of airborne samplers in the chamber. An Andersen sampler was compared with a TSP sampler quantified by a coulter counter multisizer, as a reference sampler, to describe the correlation of mass sampling efficiencies between two types of samplers. Overall results indicate that Andersen samplers overestimated small PM due to particle bounce phenomena between impaction stages. There was reasonably good correlation ($R^2$ = 0.89 and 0.91) between the mass sampling efficiencies of Andersen and TSP samplers during the two tests. However, the lower values of slope (0.71 and 0.72) in two tests showed that the Andersen sampler underestimated PM (> AD $10.1\;{\mu}m$) with sufficient inertia due to a relatively lower Andersen inlet velocity at 0.8 m/s comparing with the operating air velocity at 2.1 m/s in the sampling zone of a chamber.

粒子狀 物質中 金屬成分의 密度分布 (Density Distributions of Metallic Compounds in Particulate Matters)

  • 허문영;김형춘;손동헌
    • 한국대기환경학회지
    • /
    • 제2권2호
    • /
    • pp.9-18
    • /
    • 1986
  • For identification and apportionment of sources emitting particulate matters in environment, the multi-elemental characterization of size-density fractionated particulate matters was carried out. Eight types of samples were tested; soil, flyash released from burning of bunker-Coil, diesel oil, coal, and soft coal, urban road-way dust, urban dust fall, and airborne particulate matter. The fractions of particulate matters obtained by heavy liquid separation methos with a series of dichloromethane-bromoform were then analyzed using atomic absorption spectrophotometry for Ni, Cr, Cu, An, Fe, Al, and Mg. Each sample showed a different concentration profile as a function of density, and a number of useful conclusions concerning characterization of elemental distribution were obtained. From the density distributions of elements in soil, the maximum value was found for all elements in the density range of 2.2 $\sim 2.9g.cm^{-3}$, including the density of $SiO_2$. However, the distribution of metallic compounds with the density lower than $2.2g.cm^{-3}$ was prevalent in urban roadway dust, urban dust fall, and airborne particulate matter. And the density distribution curves of these urban dusts also have the higher distribution at the density of 2.2 - 2.9g.cm^{-3}$, including the density of wind-blown silica. This tendency generally was prevalent in the natural source elements, such as Al, Fe, Mn, and Mg. The maximum values were found in the density ranges of 1.3 $\sim 2.2g.cm^{-3}$ from the density distribution of elements in oil fired flyash. These distributions of anthropogenic source elements, such as Zn, Ni, Cu, and Cr were higher predominately than those of natural source elements. And the higher distribution was found in the density range of $2.2 \sim 2.9g.cm^{-3}$ from the density distribution of elements in coal and soft-coal fired flyash. These distributions showed similar patterns to soil. But anthropogenic source elements somewhat predominated at the density ranges of $1.3 \sim 2.2g.cm{-3} and 2.9g.cm^{-3}$ to soil. Therefore the higher distribution of anthropogenic source elements in the density ranges of $1.3 \sim 2.2g.cm^{-3} and 2.9g.cm^{-3}$ was considered as anthropogenic origin.

  • PDF

CCT-ICP-MS의 대기분진내 미량원소분석에 대한 적용성 (Applicability of CCT-ICP-MS for the Determination of Trace Elements in Airborne Particulate Matters)

  • 임종명;이진홍;서만철
    • 한국대기환경학회지
    • /
    • 제20권3호
    • /
    • pp.397-409
    • /
    • 2004
  • There has been few studies of either domestic or international to apply CCT-ICP-MS for the precise analysis of As and Cr components associated with airborne particulate matter. To date, the use of CCT-ICP-MS is strongly recommended for the accurate analysis of the toxic trace metals; this is because CCT-ICP-MS technique prevents polyatomic spectral interferences involved in the determination of As and/or Cr components. Taking advantage of CCT-ICP-MS technique, the measurements of about 20 metals were undertaken in this study. The standard reference material (NIST SRM 2783) was used for analytical quality control. To improve analytical accuracy and of acid efficiency, we selected nitric acid based on a test of three kinds of acid for microwave digestion method 1 ) nitric acid. 2) nitric acid and hydrogen peroxide. and 3) nitric acid and perchloric acid. When this method was employed, relative errors to SRM values of Al, As, Cr Fe, Mg, Mn, Pb, Sb, V, and Zn fell below 20%, while those or Ca, Si, and Ti were higher than 20%. The overall results of our study show that the concentrations of As and V determined by CCT-ICP-MS were satisfied with the certificated values within a relative error of 20e1c, whereas those determined by ICP-MS were 10 times higher than the certificated values.