• Title/Summary/Keyword: airborne dust

Search Result 137, Processing Time 0.02 seconds

Characterization of Individual Atmospheric Aerosols Using Quantitative Energy Dispersive-Electron Probe X-ray Microanalysis: A Review

  • Kim, Hye-Kyeong;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.115-140
    • /
    • 2010
  • Great concerns about atmospheric aerosols are attributed to their multiple roles to atmospheric processes. For example, atmospheric aerosols influence global climate, directly by scattering or absorbing solar radiations and indirectly by serving as cloud condensation nuclei. They also have a significant impact on human health and visibility. Many of these effects depend on the size and composition of atmospheric aerosols, and thus detailed information on the physicochemical properties and the distribution of airborne particles is critical to accurately predict their impact on the Earth's climate as well as human health. A single particle analysis technique, named low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) that can determine the concentration of low-Z elements such as carbon, nitrogen and oxygen in a microscopic volume has been developed. The capability of quantitative analysis of low-Z elements in individual particle allows the characterization of especially important atmospheric particles such as sulfates, nitrates, ammonium, and carbonaceous particles. Furthermore, the diversity and the complicated heterogeneity of atmospheric particles in chemical compositions can be investigated in detail. In this review, the development and methodology of low-Z particle EPMA for the analysis of atmospheric aerosols are introduced. Also, its typical applications for the characterization of various atmospheric particles, i.e., on the chemical compositions, morphologies, the size segregated distributions, and the origins of Asian dust, urban aerosols, indoor aerosols in underground subway station, and Arctic aerosols, are illustrated.

Effect of Particle Contamination of Objective Lens in a CD-ROM Drive on Laser Diode Power and Photo Diode RE Signal (CD-ROM 드라이브의 대물렌즈 입자오염이 레이저 다이오드 파워와 포토 다이오드 RF 신호에 미치는 영향)

  • Pae, Yang-Il;Lee, Jae-Ho;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • Airborne contaminant particles are intruded into optical disk drive(ODD) due to the flow caused by disk rotation and can be adhered to objective lens, which causes read/write errors. Such a phenomenon can be a serious problem for high-density storage devices. The purpose of this paper is to understand the effect of particle contamination of objective lens in a CD-ROM drive on laser diode power and photo diode RF signal. The measurements of laser power and readout RF signal were carried out by using a laser power meter and a time interval analyzer, respectively. The parameters for estimating a readout-signal' distortion were its jitter and amplitude. Alumina(Al$_2$O$_3$) particles were used as test dust particles. The results show that the failure for data access happened as the degree of lens contamination was greater than 20%.

SPM AND CONIDIA OF MOLDS DURING THE ASIAN DUST EPISODES

  • Yeo, Hwan-Goo;Kim, Jong-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.1.1-5
    • /
    • 2001
  • High SPM concentrations(199.8~249.4${\mu}{\textrm}{m}$/㎥) were detected in the west Korea during the Yellow Sand Periods, 2000. Majority of the total SPM were composed of about 5${\mu}{\textrm}{m}$ sized coarse particles over the periods. However, fine particles sized about 1 ${\mu}{\textrm}{m}$ and coarse particles sized about 5-6${\mu}{\textrm}{m}$ showed peaks at the graph of SPM size distribution in the Non Yellow Sand Period. Airborne fungal spores at the SPM samples were cultured and identified. Full-grown colonies during the Yellow Sand Periods, Fusarium, Aspergillus, Penicillium and Basipetospora are hyphomycetes in the division Fungi imperfecti(Deuteromycota). And morphologically more diversified mycelia of hyphomycetes were grown on the sample captured from 1.1~2.1${\mu}{\textrm}{m}$ sized SPM than on other sized samples during the Yellow Sand Period. But no mold was observed on the sample of 1.1~2.1${\mu}{\textrm}{m}$ sized SPM in the Non Yellow Sand Period. It was thought that several sorts of fine sized fungal spores were suspended in the atmospheric environment of the west Korea during the Asian dust episodes.

  • PDF

Efficiency of Removal of Indoor Pollutants by Pistia stratiotes, Eichhornia crassipes and Hydrocotyle umbellata

  • Park, Hye-Min;Lee, Ae-Kyung
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.1
    • /
    • pp.15-21
    • /
    • 2020
  • In this study, we compared efficiency of different aquatic plants in removing indoor pollutants and examined their potential to purify indoor air. Two liter of water in chamber was used as the control, while the other chambers containing water lettuce (Pistia stratiotes), water hyacinth (Eichhornia crassipes), and water coin (Hydrocotyle umbellata) were used as treatment groups. Temperatures inside all the chambers were maintained between 20 ℃ and 23 ℃. Humidity in the chambers with aquatic plants increased by 30% and 50% control respectively. The removal of formaldehyde per unit leaf area was examined in each aquatic plant. It turned out that water hyacinth removed the highest amount of formaldehyde, followed by water lettuce and water coin. Both water hyacinth and water lettuce increased the amount of removal of formaldehyde until the end of the experiment. In the case of airborne dust (PM 10) and fine dust (PM 2.5), water coin, which had the highest number of leaves, removed more PM 10 and PM 2.5 than the other aquatic plants, with statistically significant difference. In addition, both water coin and water hyacinth smoothly opened and closed stomata before and after the experiment. Consequently, as the aquatic plants were effective in controlling humidity and removing pollutants, they can be used as air purifying plants.

A Study on the Source Apportionment of the Atmospheric Fine Particles in Jeju area (제주지역 미세먼지의 오염원 규명에 관한 연구)

  • Hu, Chul-Goo;Yang, Su-Mi;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.217-225
    • /
    • 2003
  • Samples of size-fractionated PM10 (airborne particulate matter with aerodynamic diameter less than $10\mu\textrm{m}$) were collected at an urban site in Jeju city from May to September 2002. The mass concentration and chemical composition of the samples were measured. The data sets were then applied to the CMB receptor model to estimate the source contribution of PM10 in Jeju area. The average PM10 mass concentration was 28.80$\mu\textrm{g}/m^3$ ($24.6~33.49\mu\textrm{g}/m^3$), and the FP (fine particle with aerodynamic diameter less than $2.l\mu\textrm{m}$ fraction in PM10 was approximately 8% higher than the CP (coarse particle with aerodynamic diameter greater than $2.l\mu\textrm{m}$ and less than $10\mu\textrm{m}$ fraction in PM10. The CP composition was obviously different from the FP composition, that is, the most abundant water soluble species was nitrate ion in the FP, but sulfate ion in the CP. Also sulfur was the most dominant element in the FP, however, sodium was that in the CP. From CMB receptor model results, it was found that road dust was the largest contributor to the CP mass concentration (45% of the CP) and ammonium nitrate, domestic boiler, and marine aerosol were major sources to the CP mass. However, the secondary aerosol was the most significant contributor to the FP mass concentration (45% of the FP). In this study, it was suggested that the contributions of soil dust and gasoline vehicle became very low due to collinearity with road dust and diesel vehicle, respectively.

Development of DNA-Based Assessment Method for Mold in Floor Dust of Dwellings in Korea (바닥 먼지내에서 DNA 기반 곰팡이 분석기법 개발)

  • Lee, Jeong-Sub;Kim, Sung Yeon;Choi, Kil Yong;Ryu, Jungmin;Hwang, Eun Seol;Lee, Juyeong;Kwon, Myunghee;Chung, Hyenmi;Seo, SungChul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.324-332
    • /
    • 2017
  • Objectives: Much scientific evidence indicate a positive association between moldy environments and respiratory illnesses and/or symptoms. However, few comprehensive assessments of mold have been performed for such settings. Spore counts or microscopic enumeration only may not be sufficient for evaluating fungal exposure. Recently, Mold Specific QPCR technology developed by the US EPA (Environmental Relative Moldiness Index, ERMI) has been widely used worldwide and great performance for assessing fungal exposure has been shown. Methods: We aimed to develop a Korean version of ERMI suitable for the distribution of fungal flora in Korea. Thirty dwellings in the Seoul and Incheon area were selected for sampling, and each was classified as 'Flooded, 'Water-damaged' or 'Non-water-damaged'. Results: Dust on the floor and airborne sampling were collected using an MAS100 and a 'Dustream' collector. Samples were analyzed by quantitative polymerase chain reaction(QPCR) for the 36 molds belonging to ERMI. Student t-test and ANOVA tests were carried out using SAS software. The median ERMI values of flooded, water damaged, and non-water damaged dwellings were 8.24(range: -5.6 to 27.9), 5.47(-25. 4 to 32.7), and -15.30(-24.6 to 14.8), respectively. Significant differences were observed between flooded and non-water damaged dwellings (P=0.001) and between water-damaged and non-water damaged dwellings (P=0.032). Conclusion: Our findings indicate that ERMI values attributed to dust samples in Korea could be applicable for the identification of flooded or water damaged buildings. However, much data is needed for continuously developing the Korean version of ERMI values.

Analysis of Quartz Contents by XRD and FTIR in Respirable Dust from Various Manufacturing Industries Part 2 - Ceramics, Stone, Concrete, Glass and Briquets, etc. (제조업체에서 발생하는 호흡성분진중 XRD와 FTIR를 이용한 결정형유리규산 농도의 분석 제2부 : 요업, 석재, 콘크리트, 유리, 연탄 및 기타사업장)

  • Kim, Hyunwook;Phee, Young Gyu;Roh, Young Man;Won, Jeoung Il
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.99-111
    • /
    • 1999
  • The purpose of this study was to evaluate crystalline silica contents in airborne respirable dusts from various manufacturing industries and to compare analytical ability of two different methods of quantifying crystalline silica, X-ray diffraction(XRD) and Fourie transform infrared spectroscopy(FTIR). Various manufacturing industries with a history of having pneumoconiosis cases and also known to generate dusts containing crystalline silica were investigated. These industries include: ceramics, brick, concrete, and abrasive material etc. The personal respirable dust samples were collected using l0mm, Dorr-Oliver nylon cyclone equipped with 37mm, $5{\mu}m$ pore size. polyvinylchloride (PVC) filters as collection media. All samples were weighed before and after sampling and were pretreated according to the NIOSH sampling and analytical methods 7500, and 7602 for dust collection and quartz analysis. A total of 48 samples were collected from these industries. Initial analyses of these samples showed log-normal distributions for dust and quartz concentrations. Some results from ceramics and stone exceeded current Korean Occupational Exposure Limits. The average concentrations of personal respirable dust by cyclone were 0.43, 0.24, 0.26, 0.42, 0.53 and $0.29mg/m^3$ in ceramics, stone, concrete, glass, briquets, and others, respectively. A comparison of performance of two analytical methods for quantifying crystalline silica was performed using data from ceramics. The results showed that no significant difference was found between two methods for ceramics. The mean crystalline silica contents determined by XRD were 3.41 % of samples from briquets and 7.18 % from ceramics and were 2.58 % from concrete and 10.33 % from ceramics by FTIR. For crystalline silica analysis, two analytical techniques were highly correlated with $r^2=0.81$ from ceramics. Both cristobalite and tridymite were not detected by XRD and FTIR.

  • PDF

Statistical Analysis on Pollutants of Total Suspended Particulates in the Ambient Air (대기 부유 분진 중 미량유해물질들의 통계적 오염 해석)

  • 허문영;유기선;김경호;손동헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.155-160
    • /
    • 1990
  • During the period from Mar. 1985 to Feb. 1988, airborne particulate matters were collected and size fractionated by the ANdersen high volume air sampler in Seoul. The concentrations of several heavy metals (Pb, Cu, Zn, Fe, Mn) and benzo(a)pyrene were determined to investigate the size distributions and seasonal variations. And with respect to seven components in the total suspended particulate (TSP), the factor analysis was performed for three groups such as the coarse particles (> 2 $\mu$m), fine particles (< $\mu$m) and TSP. As a result of factor analysis by using the varimax method, the chemical components in the TSP were able to characterize with two principal factors. The first factor, F1 was considered to be a factor indicating the contribution of natural sources and the second factor, F2 was a factor indicating the degree of artificial sources. Each components in the TSP was divided into two main groups of components originated from soil and/or road dust and pollutants originated from automobiles and/or human work.

  • PDF

Simultaneous Determination of Polycyclic Aromatic Hydrocarbons and Their Nitro-derivatives in Airborne Particulates by Using Two-dimensional High-performance Liquid Chromatography with On-line Reduction and Fluorescence Detection

  • Boongla, Yaowatat;Orakij, Walaiporn;Nagaoka, Yuuki;Tang, Ning;Hayakawa, Kazuichi;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.283-299
    • /
    • 2017
  • An analytical method using high-performance liquid chromatography (HPLC) with fluorescence (FL) detection was developed for simultaneously analyzing 10 polycyclic aromatic hydrocarbons (PAHs) and 18 nitro-derivatives of PAHs (NPAHs). The two-dimensional HPLC system consists of an on-line clean-up and reduction for NPAHs in the 1st dimension, and separation of the PAHs and the reduced NPAHs and their FL detection in the 2nd dimension after column-switching. To identify an ideal clean-up column for removing sample matrix that may interfere with detection of the analytes, the characteristics of 8 reversed-phase columns were evaluated. The nitrophenylethyl (NPE)-bonded silica column was selected because of its shorter elution band and larger retention factors of the analytes due to strong dipole-dipole interactions. The amino-substituted PAHs (reduced NPAHs), PAHs and deuterated internal standards were separated on polymeric octadecyl-bonded silica (ODS) columns and by dual-channel detection within 120 min including clean-up and reduction steps. The limits of detection were 0.1-9.2 pg per injection for PAHs and 0.1-140 pg per injection for NPAHs. For validation, the method was applied to analyze crude extracts of fine particulate matter ($PM_{2.5}$) samples and achieved good analytical precision and accuracy. Moreover, the standard reference material (SRM1649b, urban dust) was analyzed by this method and the observed concentrations of PAHs and NPAHs were similar to those in previous reports. Thus, the method developed here-in has the potential to become a standard HPLC-based method, especially for NPAHs.

A Study on the Biological Hazards Exposure for Waste Handling Industries in Korea (국내 폐기물 취급업의 생물학적 인자 노출실태)

  • Park, Hyunhee;Park, Hae Dong;Lee, Inseop
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.4
    • /
    • pp.265-275
    • /
    • 2012
  • Objectives: The aim of this study was to investigate the distribution patterns and exposure concentrations of biological hazards in waste handling industries. Methods: We selected 3 recyclable waste sorting plants(RWS), 2 food recycling plants(FR), 1 landfill area(LA) and 1 waste incineration plant(WI). Total airborne bacteria and fungi were measured with single stage impactor and gelatin filters. Endotoxin and glucan were measured with polycarbonate filters in total and respirable dust. Results: The geometric mean of airborne bacterial concentration was the highest in FR($3,273CFU/m^3$), followed by LA, RWS, and WI as 1,334, 934, and $860CFU/m^3$. The fungal concentrations were 6,031, 5,052, 3,307, and $713CFU/m^3$ in RWS, WI, FR, and LA, respectively. By process, WI pit showed the highest concentrations of bacteria, fungi, and endotoxin, followed by inside of bulldozer in LA. The indoor to outdoor ratios of bacteria, fungi, endotoxin and glucan were 2.3, 4.0, 2.3, and 5.0 in RWS, 29.5, 4.9, 7.6, and 5.0 in FR, 5.3, 8.7, 26.8, and 9.5 in WI, respectively. Conclusions: We found that biological hazards, specifically bacteria in FR, fungi in RWS and endotoxin in WI pit and bulldozer at LA, should be controlled to prevent worker's respiratory diseases.