• 제목/요약/키워드: air-lift reactor

검색결과 24건 처리시간 0.022초

기포탑 및 막 재순환 생물반응기에서의 Saccharomycopsis lipolytica에 의한 구연산 생산 (Citric Acid Production by Succharomycopsis lipolytica in Air-lift and Membrane Recycle Bioreactors)

  • 조대철;정봉현;장호남
    • 한국미생물·생명공학회지
    • /
    • 제17권6호
    • /
    • pp.624-628
    • /
    • 1989
  • A study on the citric acid production using Saccharomycopsis lipolytica (NRRL Y7576) was carried out in shake-flasks, air-lift and membrane recycle bioreactors. The cells entrapped in Ca-alginate beads were used in shake-flasks and air-lift reactor. Repeated batch fermentation in shake-flasks was successfully performed for 34 days and resulted in a yield of 54%. Increased yield (63%) was obtained in the air-lift reactor operation using nitrogen deficient medium (NDM). In the membrane recycle bioreactor operation, the maximal dry cell mass concentration was 39 g/1 at a dilution rate of 0.02 h$^{-1}$ and the yield with NDM was higher than that with growth medium. In addition, the yield and volumetric productivity with pure oxygen supply were greatly improved compared with those with air supply.

  • PDF

공기부상반응조에서 체류시간과 반송율에 의한 유기물질 및 질소제거 향상에 관한 연구 (Improvement of Organics and Nitrogen Removal by HRT and Recycling Rate in Air Lift Reactors)

  • 김진기;유성환;임봉수
    • 한국물환경학회지
    • /
    • 제22권1호
    • /
    • pp.45-50
    • /
    • 2006
  • This study was performed to evaluate the air lift reactors (ALR) by variations of HRT and recycling rate. Air lift reactor was composed of bioreactor and clarifier above it. To remove organic matters and nitrogen through the formation of microbic film and filtration, bio-filter reactors were filled with clay, glass, bead, waste plastic, respectively. Influent wastewater was fed to biofilter reactor, and effluent wastewater from bio-filter reactor was injected ALR again, instead of adding external carbon source. Effluent BOD concentration was satisfied with lower than 10 mg/L in recycling rate 100% regardless of the variation of HRT and the kinds of media materials. In HRT 4 hr, recycling rate 100%, BOD removal efficiency rate was from about 85 to 90%, COD removal efficiency rate was higher than 90%. Effluent TN concentration was satisfied with less than 20 mg/L, if HRT was maintained by over than 6 hr regardless of recycling rate and media materials. Over than HRT was 4 hr, microbes concentration in air lift reactor was maintained over than 2,500 mg/L constantly, not sensitive to environmental condition, and organic removal was effective as it was higher.

응집성 Saccharomyces cerevisiae CA-1에 의한 에탄올 연속발효 (Continuous Ethanol Fermentation in Air-lift Reactor by Flocculent Saccharomyces cerevisiae CA-1)

  • 이용범;심상국;한면수;정동효
    • 한국미생물·생명공학회지
    • /
    • 제23권6호
    • /
    • pp.717-722
    • /
    • 1995
  • Using a flocculating Saccharomyes cerevisiae CA-1, an air-lift reactor equipped with a modified settler was used for ethanol fermentation. The effects of conditions such as aeration rate, initial glucose concentration, and dilution rate were studied using the air-lift reactor. In batch fermentation, optimum aeration rate was 0.5 vvm. In continuous fermentation, aeration rate and initial pH were fixed 0.5 vvm and 4.5, substrate concentration and dillution rate were changed 10-15% and 0.1-1.3. The maximum ethanol productivity was shown to be 20.4 g/l$\cdot $h in 10% glucose and 0.7 h$^{-1}$ dilution rate., and optimum operation condition considering the ethanol productivity and glucose utilization ratio was 0.5 h$^{-1}$ dilution rate in 10% glucose concentration.

  • PDF

배추 뿌리의 Peroxidase를 이용한 Phenol의 제거 (Phenol Removal by Peroxidases Extracted from Chinese Cabbage Root)

  • 김영미;한달호
    • KSBB Journal
    • /
    • 제10권3호
    • /
    • pp.335-342
    • /
    • 1995
  • 농산 폐기물인 배추 뿌리에 다량으로 존재하는 peroxidase를 산업적으로 이용하기 위하여 배추 뿌 라를 JUicer로 대량 추출하여 객상효소 부분과 고형 물 부분을 얻었다. Peroxidase는 액상 부분에 약 6 66%, 고형물 부분에 34%가 분포되어 있으므로 두 부분을 모두 이용하여 phenol성 폐수의 효소적 처리를 검토하였다. Batch stirred reactor에서 액상효소(1,800 unit/$\ell$) 를 이용하여 150ppm의 phenol 용액을 처리한 결과 3시간 후에 96% 의 phenol을 중 합시켜 침전으로 제거할 수 있었다. 한편 pulp를 이용한 air lift reactor(600 unit/$\ell$) 에서는 120ppm의 초기 phenol 농도로부터 5ppm까지 제거할 수 있 다. Batch stirred reactor에 비하여 air lift reactor에 첨가된 효소의 양이 1/3임에도 불구하고 거의 비숫한 phenol 제거 효율을 냐타내었다.

  • PDF

공기부상 생물막 반응기를 이용한 산업폐수 처리 (Wastewater Treatment using Air-lift Biofilm Reactor)

  • 최광수;한기백
    • 한국환경과학회지
    • /
    • 제9권4호
    • /
    • pp.351-367
    • /
    • 2000
  • Air-lift biofilm reactor should be an admirable process substituting conventional activated sludge process, because of its small area requirement as well as high volumetric loading capacity and stability against loading and chemical shocks. However most of the past research on the performance of ABR was focused on the sewage treatment. This research studied the applicability of ABR to treat high strength wastewater. A bench-scale ABR was operated to treat high strength synthetic wastewater, tannery wastewater and petrochemical wastewater, and its applicability was conclusive In case of synthetic wastewater, ABR showed good performance in which the substarate removal efficiency was higher that 80% even under short HRT(1.4 hr) and high volumetric loading rate(9.3 kgCODcr/$m^3$.day). When ABR was applied to treat tannery wastewater, it was suggested that the maximum volumetric loading rate and F/M ratio should be 7.7kgCODcr/$m^3$.day, 0.76 $day^{-1}$, respectively. And high substrate removal efficiency over than 90 % was observed with 4,000 mgCODcr/L of petrochemical wastewater. Even though effluent concentration was quite high, ABR should be applicable to treat the high strength wastewater, because of its high loading capacity.

  • PDF

A Study on Applying PID Control to a Downdraft Fixed Bed Gasifier using Wood Pellets

  • Park, Bu-Gae;Park, Seong-Mi;Park, Sung-Jun
    • 한국산업융합학회 논문집
    • /
    • 제25권2_1호
    • /
    • pp.149-159
    • /
    • 2022
  • Biomass is material that is comprehensive of carbonaceous materials from plants, crops, animals, and algae. It has been used as one of heating fuel since the beginning the emergence of human beings. Since biomass is regarded as carbon-neutral energy source, it has recently been attracting attention as an energy source that can replace fossil fuels. The most widely applied field is distributed power generation, and a method of generating electric power by driving an internal combustion engine with syngas produced by gasifier is chosen. While the composition of the syngas produced in gasifiers changes depending on the air flowing into the reactor, commercialized gasifiers so far do not control the air flowing into the reactor. When the inner pressure in reactor increases, the air sucked into the reactor is reduced. That change of amount of air makes the composition of syngas varied. Those variations of composition of syngas cause the incomplete combustion hence the power output of engine drops, which is a critical weakness of the gasification technology. In this paper, to produce the uniformly composed syngas, PID control is applied. The result was shown when the amount of air into the reactor is supplied with the constant amount using PID control, the standard deviation of caloric values of syngas is around 2[%] of its average value. Meanwhile the gasifier without PID control has the standard deviation of caloric values is around 7[%]. Therefore, Adopting PID control to supply constant air to the gasifier is highly desirable.

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process

  • Jung, Minki;Oh, Taeseok;Jung, Kyungbong;Kim, Jaemin;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.265-275
    • /
    • 2019
  • This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.

내부순환식 기포탑 반응기 상에서 MEA (monoethanolamine) 용액에 의한 이산화탄소 분리 및 메탄회수 (Methane Recovery and Carbon Dioxide Stripping by MEA Solution the Autocirculation Bubble Lift Column Reactor)

  • 이인화;김선일;박주영
    • 공업화학
    • /
    • 제18권3호
    • /
    • pp.239-244
    • /
    • 2007
  • 이산화탄소 분리 및 메탄 회수를 동시에 수행하기 위한 배출구가 두 개로 분리된 내부순환식 기포탑 반응기를 이용하여 $CO_2$ 분리용 흡수제인 모노에탄올아민(MEA)의 최적조건을 도출하였다. 5 wt% MEA 수용액에서 이산화탄소의 흡수 및 탈기 반응 시 pH 변화, 공기주입량에 따른 이산화탄소 탈기량 및 메탄 함량변화를 관찰하였다. 또한 액상수위 및 초기 MEA 흡수액 온도변화에 따른 이산화탄소 흡수 및 메탄 회수율을 측정하였다. 최적반응조건은 정상상태에서 액상수위 40 mm, 공기주입량은 1.5 L/min, 흡수액의 온도 $25^{\circ}C$이었다

이상 유동 수치해석을 이용한 기포 구동 생물 반응기 내부 최적 구조에 관한 연구 (Study on optimum structure of air-lift bio-reactor using numerical analysis of two-phase flow)

  • 김산;정지홍;이재원;손동기;고한서
    • 한국가시화정보학회지
    • /
    • 제17권3호
    • /
    • pp.24-31
    • /
    • 2019
  • Recently, an air-lift bio-reactor operated by micro bubbles has been utilized to product hydrogen fuel. To enhance the performance, characteristics of hydrodynamics inside the bio-reactor were analyzed using a numerical simulation for two-phase flow. An Eulerian model was employed for both of liquid and gas phases. The standard k-ε model was used for turbulence induced by micro bubbles. A Population Balance Model was employed to consider size distribution of bubbles. A hollow cylinder was introduced at the center of the reactor to reduce a dead area which disturbs circulation of CO bubbles. An appropriate diameter of the draft tube and hollow cylinder were optimized for better performance of the bio-reactor. The optimum model could be obtained when the cross-sectional area ratio of the hollow cylinder to the reactor, and the width ratio of the riser to the downcomer approached 0.4 and 3.5, respectively. Consequently, it is expected that the optimum model could enhance the performance of the bio-reactor with the homogeneous distribution and higher density of CO, and more effective mixing.