• Title/Summary/Keyword: air-flow system

Search Result 2,491, Processing Time 0.028 seconds

Characteristics of Refrigerant Flow through Capillary Tubes and Short Tube Orifices

  • Kim, Yong-Chan;Choi, Jong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.11-21
    • /
    • 1999
  • The capillary tube and short tube orifice have been widely used as an expansion device in the refrigeration and air-conditioning system. To improve the system performance, expansion devices need to be optimized with the components of a refrigeration system. In the present study, a numerical model for a capillary, which could predict the flow rate and properties along a tube, was developed by assuming homogeneous two-phase flow. A semi-empirical flow model for evaluation of the flow rate through a short tube orifice was also developed by using the experimental data. Finally, the results of the numerical model for a capillary was compared with those of the semi-empirical model for a short tube orifice to identify the dominant flow factors for the expansion devices.

  • PDF

Comparison of refrigerant flow through capillary with short tube orifice (모세관과 오리피스 팽창장치의 냉매유량 조절특성의 비교)

  • 김용찬;최종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.118-128
    • /
    • 1998
  • Capillary and short tube orifice have been widely used as an expansion device in refrigeration and air-conditioning system. To improve the system performance, expansion devices need to be optimized with the components of a refrigeration system. In the present study, a numerical model for a capillary, which can predict properties along a tube and flow rate through a tube, was developed by assuming homogeneous two-phase flow, A semi-empirical flow model that can be used to evaluate the flow rate through a short tube orifice was also developed by summarizing the experimental data. Finally, the results of the numerical model for capillaries were compared with those of the semi-empirical model for short tube orifices to verify dominant flow factors for the expansion devices.

  • PDF

Evaluation of Indoor Air Environment by Changing Diffuser Location and Air Temperature with Under Floor Air Conditioning System (바닥취출 및 흡입시스템 공조방식에서 취출조건 변경시 실내공기환경 평가)

  • Kim Se-hwan;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.5
    • /
    • pp.397-403
    • /
    • 2005
  • The thermal comfort of occupants is directly related to several environmental factors such as velocity of air flow, turbulence intensity and temperature distribution of indoor air. The purpose of this study is to evaluate the indoor air flow and temperature distribution in office area using under-floor air-conditioning system (UFAC System) based on the results from physical measurements and to perform a Computer Fluid Dynamics (CFD) under the same condition of inlet and outlet as field measurement. The results from the CFD simulation are similar to those from the field measurement. The results show that UFAC system is provide proper indoor condition for occupants.

Numerical Analysis on the Ventilation System Improvement in Air Shot Blast Room (Air Shot Blast 작업실 내부 환기 시스템 개선에 관한 수치해석)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.5
    • /
    • pp.861-868
    • /
    • 2022
  • The purpose of this study is to design an effective atmospheric environment system through the design of the dust collection in the air shot room being operated in a domestic shipyard. The ventilation system in the current air shot room mostly uses a dust collecting filter to filter internal particles and releases them in the atmosphere. A conventional design was made too much. In order to prevent an error and draw an optimal design, Computational fluid dynamics (CFD) tried to be applied only to air shot room. In the advanced design technique, computer simulation was conducted to secure basic design data. In order to find the basic design of the ventilation system and the flow field in the air shot room at propeller mold workplace of a shipyard, the CFD was conducted. In the case of Model-1 as a conventional workplace, where air flows in the inlet due to the subatmospheric pressure generated by inhalation of an air blower and flows out to the outlet, a discharge flow rate was somewhat low, and there was the holdup zone in the room. In the case of Model-2 as an improved model, the ventilation system was improved in the Push-Pull type, and the holdup of the internal flow field was improved.

Heat Transfer Performance Variation of Condenser due to Non-uniform Air Flow (불균일한 풍속분포에 따른 응축기의 열전달 성능 변화)

  • Lee, Won-Jong;Jeong, Ji Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.193-198
    • /
    • 2014
  • Heat transfer performance variation of a condenser caused by non-uniform distribution of air flow was investigated using a numerical simulation method. A heat exchanger used for a outdoor unit of a commercial heat pump system and represented by a numerical model was selected. Non-uniform profile of air-velocity was constructed by measuring the air velocity at various locations of the outdoor unit. Simulation was conducted for various refrigerant circuits and air flow conditions. Simulation results show that the heat transfer capacity was reduced depending on the air-flow rate and the refrigerant circuit configuration. It is also shown that the capacity reduction rate is increased as the average air velocity decreases.

Numerical study on the flow characteristics in Air-conditioner duct of EMU (전동차 공조기 덕트 내의 유동특성에 관한 수치해석적 연구)

  • Kim Seung-Tech;Kim Sung-Jong;Park Geun-Soo;Park Hyung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.345-350
    • /
    • 2003
  • The inside of EMU is supplied with the cooling air from air-conditioner and the fresh air from exterior through the air-conditioner duct which is one of the air conditioning system. The shape of air-conditioner duct is a major factor in determining the air-conditioning efficiency, thermal comfort and energy efficiency. Therefore, this study is to understand the flow characteristics in the air-conditioner duct by three dimensional numerical simulation. The air-conditioner duct was calculated for the design volume flow rate, $2,726\;m^3/h/unit$. From the result of calculation and measurement, the velocity at diffuser outlet presented good agreement in general. [n this present study, the calculation was also performed for three volume flow rate(1,800, 2,200, 3,000 $m^3/h/unit$) and total pressure characteristic curve with volume flow rate was presented.

  • PDF

An Experimental Study for Noise Reduction of the Cross-Flow Fan of the Room Air-Conditioners

  • Koo, Hyoung-Mo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.89-100
    • /
    • 2000
  • Present study explains some experimental results on the aerodynamic noise of the cross-flow fan usually installed in the indoor unit of the room air-conditioners and provides a simple reduction method of radiating sound to decrease the total noise level. The spectra of the noise of the cross-flow fan were analyzed by the spectral decomposition method to characterize the generated sound. The unsteady fluctuating flow field was also measured using the I-type hot-wire probe. Comparing the spectral characteristics of the sound and the flow velocity, a useful noise reduction method was proposed, which bounds the region with a fence where the flow fluctuations were noticeably changed in the same fashion as the source spectral distribution functions vary. To validate the proposed method for reducing noise generated by the cross-flow fan, the sound pressure levels of the cross-flow fan system were compared with and without the bounding fence for various flow rates.

  • PDF

A Study on the Precise Measurement of the Performance in the Heating System (발열시스템 열적 성능의 정밀측정에 관한 연구)

  • 최창용;김홍건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.60-67
    • /
    • 2002
  • A precise measurement of field test was performed to estimate the thermal performance of the forced convection electric air heater by experiment. Air temperature, flow rate and electrical power input were measured with the related measurement sensors, and acquisition methods for the measured data were studied to estimate the thermal performance of the tested air heater effectively. To determine the mean air temperature at the flow cross-section, measuring positions were chosen by considering the flow velocity profile and the equally divided cross-sectional area. From the experimental results, thermal efficiency was obtained accurately as an indication of the tested heating system performance.

An Experimental Measurement on Transient Thermal Response in a PI-Controlled VAV System

  • Kim, Seo-Young;Moon, Jeong-Woo;Kim, Won-Nyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.10-16
    • /
    • 2003
  • The present study performs an experimental measurement on transient thermal response of an air-conditioned space by a variable air volume (VAV) system with a PI(pro-portional-integral) control logic. A thermal chamber with a PI controlled VAV unit is constructed to verify the previously suggested stratified multi-zone model. The effects of thermal parameters and control parameters such as supply air temperature and PI control factor are investigated by implementing the thermal chamber test. The experimental results obtained show that transient behavior of the air-conditioned space-temperature is in good accordance with the simulation results of the stratified thermal model.