• 제목/요약/키워드: air-flow system

검색결과 2,498건 처리시간 0.025초

상자포장 청과물의 송풍저항 특성 (Resistance to Air Flow through Packed Fruits and Vegetables in Vented Box)

  • 윤홍선;조영길;박경규
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.351-359
    • /
    • 1995
  • In pressure cooling system, produce were packed in vented box and cooled rapidly by producing a difference in air pressure on opposite faces of stacks of vented box. So, energy requirements and performance of pressure cooling system depended upon the air flow rate and the static pressure drop through packed produce in vented box. The static pressure drop across packed produce in vented box normally depended upon air flow rate, vent area of box and conditions of produce bed (depth, porosity, stacking patterns, size and shape of products) in box. The objectives of this study were to investigate the effect of vent area and air flow rate on airflow resistance of empty box and packed produce in vented box, and to investigate the relationship between the air flow resistance of packed products in vented box and sum of air flow resistance of empty box only and products in bulk only. Mandarins and tomatoes were used in the experiment. The airflow rate were in the range of 0.02~1.0$m^3$/s.$m^2$, the opening ratio of vent hole were in the range of 2.5~20% of the side area. The results were summerized as follows. 1. The pressure drops across vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. A regression equation to calculate airflow resistance of vented box was derived as a function of superficial air velocity and opening ratio of vent hole. 2. The pressure drops across packed produce in vented box increased in proportion to superficial air velocity and decreased in proportion to opening ratio of vent hole. 3. Because of the air velocity increase in the vicinity of vent hole in box, the airflow resistances of packed products in vented box were always higher than sum of air flow resistance of empty box only and products in bulk only. 4. Based on the airflow resistance of empty box and products in bulk, a regression equation to calculate airflow resistance of packed products in vented box was derived.

  • PDF

차량용 에어컨의 성능에 미치는 인자에 관한 연구 (Parametric Study on Performance of an Automobile Air Conditioner)

  • 박윤철;권기린
    • 동력기계공학회지
    • /
    • 제6권4호
    • /
    • pp.16-22
    • /
    • 2002
  • This study was conducted to find performance evaluation method for automobile air conditioner. Experimental facilities were constructed to simulate wide range of operating condition for the automobile air conditioner. Compressor speed was controled by variable speed electric motor and the power was measured through torque transducer and tachometer was used to measure compressor speed. Parametric studies were conducted in this study, to figure out effect of environment variables on the performance of the automobile air conditioner. The environmental variables are inlet air temperature, relative humidity and air flow rate for the evaporator and inlet air temperature and air flow rate for the condenser. Compressor speed is also changed. The results of this study shows that air flow rate of the evaporator is more sensitive to the performance of the automobile air conditioner than the other variables. However relative humidity of the inlet air of the evaporator strongly affects capacity rather that COP.

  • PDF

정풍량방식 덕트에서 이중압력측정방법을 이용한 취출구 풍량조정 (Balancing air flow at terminal in CAV duct system with DPM method)

  • 이대우;박명식;박영우
    • 설비공학논문집
    • /
    • 제10권1호
    • /
    • pp.66-78
    • /
    • 1998
  • Adequate ventilation with the proper amount of air to the right place is important factor to achieve a good Indoor air climate. Thus it is of prime importance that the ventilation system is working properly. This requires reliable pressure loss calculation to balance the air flow through duct systems. So a computer program for balancing CAV duct system is developed In this study. The results of CAV duct system is compared with the "Balans" code developed by Larsen from Norway. To obtain the pressure drop characteristics of damper at duct terminal, some experiments are performed using DPM(Dual Pressure Measurement) system. To adjust the resistance of damper, present study suggests that some special diffusers should be designed and damper producers should give the data of air flow vs. pressure drop to the customs when they manufacture the damper. One of the results concludes that the working time can be reduced from several minutes to several seconds per damper in the present experimental site, if the DPM system and the air volume adjusting process are used.

  • PDF

압축공기를 이용한 발사체 방출시스템 해석 (Analysis of Ejection System of Projectile with Compressed Air)

  • 권용훈;김준범;박원규;한명철;안재열;정찬희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1488-1493
    • /
    • 2004
  • The purpose of the present work is to develop a compressed air discharging system to eject a projectile from the underwater. For the flow analysis of compressed air tank, projectile ejection tube, and pipe system, the air is assumed as an ideal gas, undergoing 1-dimensional axisymmetric, compressible flow, the Fanno flow analysis was applied. The commercial Fluent code was used to solve 3-D Navier-Stokes equation of the internal flow within the valve. The dynamics of the projectile within the ejection tube was assumed 1-degree of freedom. The calculations were performed to four cases of valve opening area ratio, i.e., 25%, 50%, 75%, and 100% opening area, at both depths of 10m and 50m. The results were shown as the figures of time variation of pressure of the compressed air tank and projectile ejection tube. The velocity and distance of the projectile were also predicted.

  • PDF

차압예냉에서 청과물 상자의 적재방법에 따른 송풍저항 예측모델 개발 (An air flow resistance model for a pressure cooling system based on container stacking methods)

  • 김의웅;김훈;한재웅;이효재
    • 한국식품저장유통학회지
    • /
    • 제20권3호
    • /
    • pp.289-295
    • /
    • 2013
  • 차압예냉시스템을 설계하기 위해서는 송풍저항을 정확하게 예측해야 하며, 송풍저항은 청과물의 적재방법에 따라 크게 달라진다. 본 연구는 차압예냉시스템에서 송풍량에 따른 송풍저항식과 상자의 적재방법별로 송풍저항을 측정할 수 있는 모델을 개발하기 위하여 수행되었다. 공을 퇴적한 모형상자에서의 송풍저항은 빈 상자에서의 송풍저항과 공 퇴적층만의 송풍저항을 합한 값보다 1.5배 정도 높게 나타났다. 또한, 적재상자에서의 송풍저항은 통기폭 방향 적재상자수의 증가에 따라 지수적으로 증가하였으나, 적재길이와 적재높이의 영향은 거의 받지 않았다. 상자를 2열로 적재하는 차압예냉시스템에서 송풍저항은 1개 상자에서의 송풍저항을 기초로 예측이 가능하였으며, 예측모델을 제시하였다.

공조설비의 필터차압 변화에 따른 에너지 소비성능 평가 (Evaluation of Energy Consumption of HVAC System for Air Filter Pressure Difference Change in Commercial Buildings)

  • 원근호;곽노열;허정호
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1227-1233
    • /
    • 2004
  • Air handling unit (AHU)'s air filter pressure difference is important for energy consumption and indoor air quality. Both energy Performance data and air filter differential pressure of AHU in real office buildings were monitored and analyzed to investigate quantitatively energy impact as dust buildup level on air filter grows. We also modeled and simulated CAV system using HVACSIM+ program to examine the energy effect of dust buildup on filters. Through analysis of time series pressure drop data, the filter pressure difference rate has been increased due to cumulative supply air flow rate increase. As filter pressure drop increased to 1 inch water column, it is found that the supply air flow rate was decreased by 10%, the chilled water flow rate was increased by 5.9% and the pump energy consumption was increased to 5.9%.

공랭형 병렬방식 2중효용 흡수식 냉방시스템의 사이클 해석 (Cycle Analysis of Air-Cooled Double-Effect Absorption Cooling System with Parallel Flow Type)

  • 오명도;김선창;김영인;이홍원
    • 대한기계학회논문집
    • /
    • 제17권8호
    • /
    • pp.2099-2109
    • /
    • 1993
  • A gas-fired 4RT absorption heat pump was designed as an air-conditioner for domestic use during the summer. The absorption heat pump is air-cooled. double-effect, $LiBr-H_{2}O$ system with parallel flow type. The performance of the absorption heat pump in the cooling mode of operation was investigated through cycle modeling and simulation to obtain the system characteristics with parameter changes. System parameters considered in this analysis were the inlet temperature of cooling air to the absorber, the working solution concentrations, the ratio of the amount of the weak solution from the absorber, and the LTD's of each heat exchange component. The optimum designs and operating conditions were determined based on the operating constraints and the coefficient of performance.

A Study on the Greenhouse Water Curtain System: Heat Transfer Characteristics

  • 손원명;한길영
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.80-87
    • /
    • 1990
  • Energy balance equations Were developed to describe the heat transfer mechanisms in a double layer plastic greenhouse with a water curtain system. Heat transfer variables were determined by using various temperature data measured in a conventional prototype semicircular cross-section greenhouse over a range of water temperatures and water flow rates. The heat transfer coefficient between flowing water and greenhouse air was independent of water flow rates. But the heat transfer coefficient between water surface and the stagnant air space within the double plastic layer was dependent on water flow rates. Substituting the heat transfer coefficients, determined from the energy balance equations in the heat transfer equations, demonstrated various relationships among ambient air temperature, greenhouse air temperature, water temperature, and water flow rates. The heating benefits were linearly related to not only the inside and outside air temperatures but also to the water temperature. The energy conservation effects of the water curtain system were found even initial water temperatures were considerably lower than the greenhouse setting temperatures. Sensitivity analysis for heat transfer coefficients demonstrated that the heat transfer coefficient between greenhouse air and the stagnant air within the plastic layers was the most significant coefficient in the estimation of heating effects.

  • PDF

고속도로 요금소 부스 근무환경 개선을 위한 기류해석 연구 (A Study on Numerical Simulation for the Work Environment Improvement of Highway Tollgate Booth)

  • 김신도
    • 한국대기환경학회지
    • /
    • 제16권2호
    • /
    • pp.129-140
    • /
    • 2000
  • Simulation study has been carried out to analyze the air flow supplying from the heat pump system inside the tollgate booth by using the Phoenix computer simulation program. Through this simulation analysis we can find the problem of present tollgate booth in terms of air flow and recommend an improved model also simulate this model. Final results as follows; It was turned out that the fresh air conditioning is not provided to the worker effectively due to the improper location of inlet and outlet in the present tollgate booth in addition to that the air curtain system applied in the booth lowered air circulation from outside. The improved model was suggested first to increase the air curtain effect by downsizing the window and by installation of the air curtain suction line to reduce the induced outdoor air second to supply the fresh air to the worker directly by relocation of the inlet and outlet of supplying air. With these improved modifications better results have been reached in terms of air flow inside the booth. Next through the air flow simulation of outside booth the contaminated outdoor air has been easuily infiltrating into the booth through the window because of its rectangle shape. Stream like shape of booth has been proposed through the computer simulation as an alternative shape of tollgate booth for a new design.

  • PDF

플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템 개발(開發)에 관(關)한 연구(硏究)(I) -수막식(水膜式) 열교환(熱交換) 시스템의 개발(開發)- (Development of Thermal Storage System in Plastic Greenhouse (I) -Development of Air-Water Heat Exchange System-)

  • 김용현;고학균;김문기
    • Journal of Biosystems Engineering
    • /
    • 제15권1호
    • /
    • pp.14-22
    • /
    • 1990
  • For efficient use of solar energy in plastic greenhouse, thermal storage system was developed. The system was constructed with the counter-flow type air-water heat exchanger using a thin polyethylene film as a medium of heat exchange parts. Experiments were carried out to investigate the heat exchange rate, optimum water flow rate, overall heat transfer coefficient, and the effectiveness of the counter-flow type air-water heat exchanger with polyethylene film bags. Mathematical model to predict air temperature leaving heat exchanger was developed. The results obtained in the present study are summarized as follows. 1. Heat exchange rate in the counter-flow type air-water heat exchanger with polyethylene film bags was compared to that of polyethylene film. Heat exchange rate was almost identical at air velocity of 0.5m/s on polyethylene film surface. But, heat exchange rate of heat exchanger with polyethylene film bag was $32{\sim}55KJ/m^2$ hr higher than that of polyethylene film at air velocity of 1.0m/s. 2. Considering the formation of uniform water film and the sufficient heat exchange rate of polyethylene film bags, optimum water flow rate in polyethylene film bags was $3.0{\sim}6.0{\ell}/m^2$ min. 3. The overall heat transfer coefficient of polyethylene film bags was found to be $35.0{\sim}130.0KJ/m^2\;hr\;^{\circ}C$ corresponding to the air velocity ranging 0.5 to 4.0 m/s on polyethylene film surface. And the overall heat transfer coefficient showed almost linearly increasing tendency to the variation of air velocity. 4. Mathematical model to predict air temperature leaving the heat exchanger was developed, resulting in a good agreement between the experimental and predicted values. But, the experimental results were a little lower than predicted. 5. Effectiveness of heat exchanger for the experiment was found to be 0.40~0.81 corresponding to the number of transfer units due to the variation of air velocity ranging 0.6 to 1.7 m/s.

  • PDF