• Title/Summary/Keyword: air-floating

Search Result 175, Processing Time 0.023 seconds

Influence of denitrified biofloc water on the survival rate and physiological characteristics of Pacific white shrimp juveniles, Litopenaeus vannamei (바이오플락 탈질수가 어린 흰다리새우, Litopenaeus vannamei의 생존율 및 생리특성에 미치는 영향)

  • Kim, Su-Kyoung;Jang, Jin Woo;Jo, Yong Rok;Kim, Jun-Hwan;Kim, Su Kyoung
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.136-143
    • /
    • 2019
  • This study investigates the effect of denitrified biofloc water on changes in the water quality parameters and the physiological characteristics of shrimps. Biofloc rearing water contains a large number of microorganisms and can rapidly stabilize the water quality and energy saving if reusable due to high water temperatures. Rearing water contain floating bacteria with both aerobic and anaerobic bacteria. Therefore, when the carbon source is added in limited air supply, the anaerobic state is activated and the denitrification process is possible. In this study, the denitrification water had the following properties: ammonia (6.9 mg L-1), nitrite (0.3 mg L-1), nitrate concentration (9.2 mg L-1), high pH (8.42) and alkalinity (590 mg L-1). The experimental group consisted of seawater (SW, control), a mixture of Seawater and denitrified biofloc water (DNW) in the ratio of 3:1, 1:1 and DNW only. All experiments were done in triplicate. As a result, the survival rate never changed even when 100% of the denitrification water was utilized. However, a body fluid analysis showed that creatine and BUN were increased due to index of stress and the tissue damage resulting from the high denitrified water content. Body fluid ions (Na+, K+, and Cl-) significantly decreased as the denitrified water content increased. It was recommended that the denitrification water be mixed with a certain ratio (less than 50%) in the future as it may affect the osmotic pressure control in shrimps.

Analysis on Antifungal Activity of Paulownia-Wood Storage Box and Application of Natural Biocide for the Activity Enhancement (오동나무상자의 항균활성 분석 및 활성 증진을 위한 천연 살생물제 적용연구)

  • Chung, Yong-Jae;Kang, So-Yeong;Choi, Yun-A
    • Journal of Conservation Science
    • /
    • v.24
    • /
    • pp.75-83
    • /
    • 2008
  • In order to assess antifungal activity of a wooden storage box, which was made of Paulownia tomentosa and used for keeping ancient documents, antifungal activity of volatile organic compounds emitted from the box was investigated along with qualitative analysis on major substances of the compounds. After collecting floating microorganisms inside air tester, the fungal activity was assessed by counting the number of colonies growing on TSA media. Compared to the control which collected 85 colonies from outdoor, 72 colonies were observed showing reduction rate of 14.82%. Through GC/MS and TDS system analysis, limonene was detected from the volatile organic compounds as characteristic features. When the fungal activity was assessed through fumigation by adding natural biocide BI and BII containing eugenol and anethole as major substances, both biocides showed a strong fungal activity with respectively 92.6%(inside the box) and 99.9%(outdoor) of reduction rate. Although these results didn't clarify antifungal activity of the volatile organic compounds emitted from the Paulownia-wood storage box and their functional components, it was at least confirmed that there is application possibility of natural biocide to use for preservation of ancient documents with increased efficiency in controlling pests of wooden storage boxes.

  • PDF

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

DISTRIBUTION OF AIRBORNE BACTERIA BY HANDPIECE AEROSOL CONDITIO (핸드피스 분무조건에 따른 부유세균 기균(氣菌) 의 분포)

  • Ko, Young-Han;Baik, Byeong-Ju;Kim, Jae-Gon;Yang, Yeon-Mi;Shin, Jeong-Geun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.4
    • /
    • pp.628-634
    • /
    • 2008
  • In recent years, cross-contamination has become one of the noticeable issues in dental clinic. Two major routes of contamination are the direct-contamination through blood and oral secretion and the indirect-contamination through dental office equipments. Especially, air-contamination through air-floating pollutant in a confined space like hospital, and also contamination through aerosol ejected from high-speed handpiece in a dental office was interested. The purpose of this study was to understand risk of bacterial infection through aerosol from handpiece in a dental office, which will help the practitioner with prevention of contamination during dental treatment. The main findings are as follows. 1. In a comparative test, the group using handpiece has higher bacterial number than the group not using handpiece with significant statistical difference(P<0.01). 2. The group using handpiece with rubber dam has lower bacterial number than the group using handpiecewithout rubber dam with significant statistical difference(P<0.01). 3. Comparing the group using drainage water with the group using distilled water as a handpiece water source results in 22.4 cfu and 17.0 cfu respectively but the difference is no statistically significant(P>0.05). 4. Measuring cfu at 0.5m and 1.5m distance, 0.5m distance showed higher bacterial number with statistical significance(P<0.01). 5. Classification of bacterial types showed the largest bacterial number came from gram-positive micrococcus(73.9%), and gram-negative micrococcus, gram-negative bacillus, and gram-positive bacillus follow in descending order.

  • PDF

STUDIES ON THE PROPAGATION OF ABALONE (전복의 증식에 관한 연구)

  • PYEN Choong-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.3
    • /
    • pp.177-186
    • /
    • 1970
  • The spawning of the abalone, Haliotis discus hannai, was induced In October 1969 by air ex-position for about 30 minutes. At temperatures of from 14.0 to $18.8^{\circ}C$, the youngest trochophore stage was reached within 22 hours after the egg was laid. The trochophore was transformed into the veliger stage within 34 hours after fertilization. For $7\~9$ days after oviposition the veliger floated in sea water and then settled to the bottom. The peristomal shell was secreted along the outer lip of the aperture of the larval shell, and the first respiratory pore appears at about 110 days after fertilization. The shell attained a length of 0.40 mm in 15 days, 1.39 mm in 49 days, 2.14 mm in 110 days, 5.20 mm in 170 days and 10.00 mm in 228 days respectively. Monthly growth rate of the shell length is expressed by the following equation :$L=0.9981\;e^{0.18659M}$ where L is shell length and M is time in month. The density of floating larvae in the culture tank was about 10 larvae per 100 co. The number of larvae attached to a polyethylene collector ($30\times20\;cm$) ranged from 10 to 600. Mortality of the settled larvae on the polyethylene collector was about $87.0\%$ during 170 days following settlement. The culture of Nauicula sp. was made with rough polyethylene collectors hung at three different depths, namely 5 cm, 45 cm and 85 cm. At each depth the highest cell concentration appeared after $15\~17$ days, and the numbers of cells are shown as follows: $$5\;cm\;34.3\times10^4\;Cells/cm^2$$ $$45\;cm\;27.2\times10^4\;Cells/cm^2$$ $$85\;cm\;26.3\times10^4\;Cells/cm^2$$ At temperatures of from 13.0 to $14.3^{\circ}C$, the distance travelled by the larvae (3.0 mm In shell length) averaged 11.36 mm for a Period of 30 days. Their locomation was relatively active between 6 p.m. and 9 p.m., and $52.2\%$ of them moved during this period. When the larvae (2.0 mm in shell length) were kept in water at $0\;to\;\~1.8^{\circ}C$, they moved 1.15cm between 4 p.m. and 8 p.m. and 0.10 cm between midnight and 8 a.m. The relationships between shell length and body weight of the abalone sampled from three different localities are shown as follows: Dolsan-do $W=0.2479\;L^{2.5721}$ Huksan-do $W=0.1001\;L^{3.1021}$ Pohang $W=0.9632\;L^{2.0611}$

  • PDF