• Title/Summary/Keyword: air-cavity

Search Result 502, Processing Time 0.024 seconds

The Sensitivity Analysis of Thermal Expansion Breakage of Multi-layer Glazing in Building Envelope (건물 외피에 적용된 복층창의 열팽창 파손에 대한 민감도 분석 연구)

  • Yoon, Jong-Ho;Kim, Seung-Chul;Im, Kyung-Up;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.93-97
    • /
    • 2014
  • Curtain wall system of office buildings has recently become very common in Korea. As the multi-layer curtain glazing is exposed to outdoor environment, it is very subjected to direct environmental impact. Consequently, breakage and cracks of glazing due to heat expansion is frequently observed. This study explores various causes and aspects for destruction of multi-layer glazing. A sensitivity analysis was performed on the basis that thermal changes causes damage to the multi-layer glazing. Air temperature in air cavity within the multi-layer glazing was examined to find its effect on multi-layer glazing breakage. Analysis showed high deflection to depth ratio of 1:1.8 and that higher the aspect ratio, smaller is the deflection. Allowable pressure showed that the weakest value is for aspect ratio of 1:2.9. Sensitivity analysis by the area of the glazing showed that as area of glazing becomes higher, allowable pressure and deflection-depth ratio becomes smaller. For allowable pressure and allowable deflection-depth within air cavity, the glazing breakage occurred at least $107^{\circ}C$. The results from glazing breakage by thermal factor shows that it is hard to break the glazing with only an increase in air cavity temperature in multi-layer glazing applied in buildings.

Flow Characteristics in a Supersonic Combustor with a Configuration of a Cavity (초음속 연소기 내 공동 형상에 따른 유동 특성)

  • Yim, Geon Wook;Roh, Tae-Seong;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • The cavity inside the combustor increases the mixing efficiency of fuel and air by inducing a oscillation of the flow and the recirculation area with a low speed, and enables continuous combustion by maintaining the flame. In this study, the characteristics of the internal flow by change in the shape parameters of the cavity were analyzed through experiments and two-dimensional computational analysis. It was observed that the flow in the supersonic combustor was greatly influenced by various shape parameters of cavity besides L/D. Even with the same L/D, it was confirmed that the flow type varies depending on the depth of the cavity, either open or closed type, and the aft ramp angle of the cavity and the height of the combustor also affect the flow characteristics. As a result, the change in the shape parameters of the cavity had a great influence on the total pressure loss.

ASSESSMENT OF A NEW DESIGN FOR A REACTOR CAVITY COOLING SYSTEM IN A VERY HIGH TEMPERATURE GAS-COOLED REACTOR

  • PARK GOON-CHERL;CHO YUN-JE;CHO HYOUNGKYU
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.45-60
    • /
    • 2006
  • Presently, the VHTGR (Very High Temperature Gas-cooled Reactor) is considered the most attractive candidate for a GEN-IV reactor to produce hydrogen, which will be a key resource for future energy production. A new concept for a reactor cavity cooling system (RCCS), a critical safety feature in the VHTGR, is proposed in the present study. The proposed RCCS consists of passive water pool and active air cooling systems. These are employed to overcome the poor cooling capability of the air-cooled RCCS and the complex cavity structures of the water-cooled RCCS. In order to estimate the licensibility of the proposed design, its performance and integrity were tested experimentally with a reduced-scale mock-up facility, as well as with a separate-effect test facility (SET) for the 1/4 water pool of the RCCS-SNU to examine the heat transfer and pressure drop and code capability. This paper presents the test results for SET and validation of MARS-GCR, a system code for the safety analysis of a HTGR. In addition, CFX5.7, a computational fluid dynamics code, was also used for the code-to-code benchmark of MARS-GCR. From the present experimental and numerical studies, the efficacy of MARS-GCR in application to determining the optimal design of complicated systems such as a RCCS and evaluation of their feasibility has been validated.

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

The Thermocapillary Effect on Pure Conduction Mechanism in a Closed Square Cavity (수평 사각밀폐공간내의 전도열전달 기구에서 열모세관효과)

  • Yu, Jae-Bong;An, Do-Won;Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1209-1219
    • /
    • 2005
  • In a closed square cavity filled with a liquid, a cooling horizontal upper wall and a heating lower wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In this mechanism, Ra=1534, Temperature and velocity fields near an air-bubble in silicon-oil under a cooled upper wall were investigated. Temperature and velocity fields is visualized using the thermo-sensitive liquid-crystal and light sheet visualization technique. The quantitative analysis fer the temperature and the flow fields were carried out by applying the image processing technique to the original data. The symmetry shape of two vortexes near an air bubble was observed. As the bubble size increased, the size of vortex and the magnitude of velocity increased. In spite of elapsed time, a pair of vortexes was the unique and steady-state flow in a square cavity and wasn't induced to the other flow in the surround region.

Unsteady Characteristics of a Two-Dimensional Square Cavity Flow (2차원 정방형 캐비티유동장의 비정상특성)

  • Lee, Y.H.;Choi, J.W.;Doh, D.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.622-632
    • /
    • 1995
  • The present numerical study is aimed to investigate time-dependent characteristics of a two-dimensional lid-driven square cavity flow of three high Reynolds numbers, $7.5{\times}10^3$, $10^4$ and $3{\times}10^4$. A conservative convection term on irregular grids was adopted by renewing the MAC type difference schemes on regular grids. Relaxation of velocity and pressure is implemented by SOLA algorithm. In case of $Re=7.5{\times}10^3$, flow behavior converges to steady state after a transient period. But for $Re=10^4$, periodic unsteady sinusoidal fluctuation of local velocity and kinetic energy is found and continuous movements of small eddies in the secondary flow regions are also discovered. Random generation of eddies and their active migrating behavior are detected for $Re=3{\times}10^4$, resulting in complete unsteady and non-linear flow characteristics. And, an organized structure similar to a Moffat vortex is also observed from the time-mean flow patterns. Furthermore, a typoon-like vortex(TLV) appears intemittently and rotates along the separation regions and boundary layers.

  • PDF

Analysis on the Minima of Electromagnetic Field Scattered by an Air Cavity in the Denser Medium (매질내의 공동에 의해 산란된 전자파의 강한 감쇄에 관한 해석)

  • Lee, Tsek-Kyung;Kim, Se-Yun;Song, Jae-Won;Lee, Soo-Young;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.3
    • /
    • pp.58-69
    • /
    • 1989
  • A theoretical analysis of strong double dips in the amplitude patterns of electromagnetic field scattered by an air cavity embedded in a dielectric medium is presented with the experimental and the numerical simulation. The strongest double dips occur at the locations corresponding to the top and the bottom of the cavity by adjusting the excitation wavelength nearly equal to its radius. In particular, it may be shown that these double dips always become two nulls at a particular sending frequency in the near-field region. The locus of the frequency providing the strongest dip as a function of the observation distance is plotted.

  • PDF

Correlations between anatomical variations of the nasal cavity and ethmoidal sinuses on cone-beam computed tomography scans

  • Shokri, Abbas;Faradmal, Mohammad Javad;Hekmat, Bahareh
    • Imaging Science in Dentistry
    • /
    • v.49 no.2
    • /
    • pp.103-113
    • /
    • 2019
  • Purpose: Anatomical variations of the external nasal wall are highly important, since they play a role in obstruction or drainage of the ostiomeatal complex and ventilation and can consequently elevate the risk of pathological sinus conditions. This study aimed to assess anatomical variations of the nasal cavity and ethmoidal sinuses and their correlations on cone-beam computed tomography (CBCT) scans. Materials and Methods: This cross-sectional study evaluated CBCT scans of 250 patients, including 107 males and 143 females, to determine the prevalence of anatomical variations of the nasal cavity and ethmoidal sinuses. All images were taken using a New Tom 3G scanner. Data were analyzed using the chi-square test, Kruskal-Wallis test, and the Mann-Whitney test. Results: The most common anatomical variations were found to be nasal septal deviation (90.4%), agger nasi air cell (53.6%), superior orbital cell(47.6%), pneumatized nasal septum(40%), and Onodi air cell(37.2%). Correlations were found between nasal septal deviation and the presence of a pneumatized nasal septum, nasal spur, and Haller cell. No significant associations were noted between the age or sex of patients and the presence of anatomical variations (P>0.05). Conclusion: Radiologists and surgeons must pay close attention to the anatomical variations of the sinonasal region in the preoperative assessment to prevent perioperative complications.

Theoretical Analysis and Optimization of Extrinsic Fabry-Perot Interferometer Optical-fiber Humidity-sensor Structures

  • Yin, Xiao Lei;Wang, Ning;Yu, Xiao Dan;Li, Yu Hao;Zhang, Bo;Li, Dai Lin
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.652-659
    • /
    • 2021
  • The theoretical analysis and optimization of extrinsic Fabry-Perot interferometer (EFPI) opticalfiber humidity sensors are deeply investigated. For a typical dual-cavity structure composed of an optical fiber and a humidity-sensitive membrane (HSM), the changes in refractive index (RI) and initial length are discussed for polymer materials and porous oxide materials when relative humidity (RH) increases. The typical interference spectrum is simulated at different RH using MATLAB. The spectral change caused by changing HSM RI and initial length are simulated simutineously, showing different influences on humidity response. To deeply investigate the influence on RH sensitivity, the typical response sensitivity curves for different HSM lengths and air-cavity lengths are simulated. The results show that the HSM is the vital factor. Short HSM length can improve the sensitivity, but for HSM RI and length the influences on sensitivity are opposite, because of the opposite spectral-shift trend. Deep discussion and an optimization method are provided to solve this problem. According to analysis, an opaque HSM is helpful to improve sensitivity. Furthermore, if using an opaque HSM, a short air cavity and long HSM length can improve the sensor's sensitivity These results provide deep understanding and some ideas for designing and optimizing highly sensitive EFPI fiber humidity sensors.