• 제목/요약/키워드: air void

검색결과 263건 처리시간 0.02초

Experimental Investigation on Air-Distribution in a Water-Flowing through a G1-Rod Bundle with Helical Spacers

  • Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.79-86
    • /
    • 1978
  • The object of this study was to obtain data on air-distributions in two-phase up flow in vertical rod-bundle test-section. The test-section in this study was a hexagonal shaped 61-rod bundle where each rod was wrapped with helical spacers. The variables were flow rates of air and water and air inlet positions. Experimental data were obtained at the outlet of the test-section. The experiments were performed in two parts. Firstly, data were taken at increasing flow rates of air keeping water flow rates constant, and secondly, at simultaneous increase of air and water flow rates. At each flow condition, air supply position could be changed to 4 different positions. Data obtained by electrical void-needle technique were analyed and are presented here in graphical forms for comparison. The results of this study demonstrate qualitatively that air-distribution tends to be more uniform as water flow rates are increased. The air supply positions have noticeable effects on the pattern of air-distribution.

  • PDF

Pressure Distributions of a Screw-type Centrifugal Pump Operating in Air-Water Two-Phase Flow (기액 이상류시의 스크류식 원심펌프의 압력분포)

  • Kim, You-Taek;Choi, Min-Seon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • 제4권3호
    • /
    • pp.39-45
    • /
    • 2001
  • It is reported recently that the pump head deterioration near the best efficiency point, from single-phase flow to the choke due to air entrainment became less in a screw-type centrifugal pump than in a general centrifugal pump. Moreover, at a narrow tip clearance, the pump head became partially higher in two-phase flow than that in single-phase flow. However, the internal pressure fluctuations on this pump due to air entrainment have not been studied yet. For that reason, we have examined the influences of void fraction, flow coefficient and impeller tip clearance on pressure fluctuations in the casing. The void fraction became larger, the influence of tip clearance on pressure distribution became less.

  • PDF

Air-Void Structure of Very-Early Strength Latex-Modified Concrete Using Ultra-Fine Fly Ash (울트라 파인 플라이 애시를 사용한 초속경 LMC의 공극구조 특성)

  • Choi, Pan-Gil;Park, Won-Il;Yun, Kyong-Ku;Lee, Bong-Hak
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제10권2호
    • /
    • pp.47-53
    • /
    • 2010
  • Very-early strength latex-modified concrete (VES-LMC) was developed with a focus on workability, strength development and long-term durability that would allow for opening a bridge to traffic only 3 hours after concrete placement, which would be useful when repairing concrete bridge deck overlays. However, even though usage of latex in VES-LMC improves the durability, it has a disadvantage that it produces lots of entrained air. Therefore, specific plan is necessary since it is weak for freezing and thawing in air-void structure. In the present study ultra-fine fly ash (UFFA) was used. Test results are follows ; Air content of VES-LMC UFFA (VES-LMC using UFFA) concrete was decreased since major pozzolan reaction was happened in one day. It was also found that total air content of concrete was decreased with pozzolan reaction since air content in 28 days was the same with one day air content. The addition of calcium hydroxide increased entrained air which is smaller than size of 200 ${\mu}m$. It was effective to improve the air-void structure of VES-LMC since spacing factor can be confirmed as smaller than size of 200 ${\mu}m$ using more than 15% of UFFA.

Measurement of Bubble Diameter and Rising Velocity in a Cylindrical Tank using an Optical Fiber Probe and a High Speed Visualization Technique (광섬유 탐침과 고속가시화 기법을 이용한 원형탱크 내부의 기포직경 및 상승속도 측정)

  • Kim, Gyurak;Choi, Seong Whan;Kim, Yoon Kee;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • 제10권2호
    • /
    • pp.14-19
    • /
    • 2012
  • An optical fiber probe system for measuring the local void fraction in the air-water two-phase flow was developed with a 1550 nm light source. Air was injected through a nozzle placed in the center of the bottom wall of a water-filled cylindrical tank. The optical fiber probe having a diameter of $125{\mu}m$ was sufficiently thin to resolve the air-water interface of the bubbly flows. To verify the performance of the optical fiber probe, the synchronized high speed visualization study using a high speed camera was carried out. Comparison between the optical signals and the instantaneous bubble diffraction images confirms that the optical fiber probe is very accurate to measure the void fraction in two-phase flows. The estimated bubble diameter and the rising velocity by the optical fiber probe have 1% and 5% of accuracy, respectively.

Influence of Binder Type on the Chloride Threshold Level for Steel Corrosion in Concrete

  • Moon Han-Young;Ann Ki-Yong;Jung Ho-Seop;Shin Dong-Gu
    • Journal of the Korea Concrete Institute
    • /
    • 제17권4호
    • /
    • pp.663-670
    • /
    • 2005
  • The present study concerns the influence of binder type on the chloride-induced corrosion being accompanied by the chloride threshold level (CTL), chloride transport and as their results the corrosion-free lift. Two levels of cement content, $30\%$ PFA and $65\%$ GGBS concrete were employed. It was found that the most dominant factor to the CTL is the entrapped air void content at the steel-concrete interface, irrespective of the chloride binding capacity, binder type and acid neutralisation capacity of cement matrix. The CTL for lower interfacial air void contents was significantly increased up to $1.52\%$ by weight of cement, whereas a same mix produced $0.35\%$ for a higher level of voids. Because of a remarkable reduction in the diffusion fur GGBS concrete, its time to corrosion ranges from 255 to 1,250 days, while the corrosion-free life for control varies from 20 to 199 days sand for $30\%$ PFA concrete from 200 to 331 days.

Estimation of Void Fraction in the Seagrass (Zostera Marina) Bed Using Sound Speed Dispersion (음속 확산을 이용한 잘피(거머리말) 서식지의 기공률 추정)

  • La, Hyoung-Sul;Na, Jung-Yul;Lee, Sung-Mi
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권1호
    • /
    • pp.33-39
    • /
    • 2008
  • Void fraction of air bubble in the seagrass bed by photosynthesis was estimated with sound speed dispersion. A field experiment was conducted at Seagrasss bed of which bottom type is sandy mud and 120 kHz CW waveform was transmitted to obtain backscattered signals from seagrass bed. The differences of the arrival time of received signal from seagrass bed were observed between day and night. The diurnal variation of arrival time was caused by sound speed dispersion of air bubble generated by photosynthesis of seagrass.

Development of Actual Measurement Spacing Factor Using Spacing Data of Air Void in Concrete (콘크리트의 공극 간격 데이터를 활용한 실측간격계수 개발)

  • Lee, Jin-Bum;Jeon, Sung-Il;Kwon, Soo-Ahn;An, Ji-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • 제23권6호
    • /
    • pp.701-709
    • /
    • 2011
  • One of the typical evaluation models of concrete air-void system is spacing factor (SF), which was suggested by Power. Power Spacing Factor (PSF) has a disadvantage of the result being different from the actual case due to the existence of entrapped air, because PSF uses average single spacing factor. Therefore, the Actual Measurement Spacing Factor (AMSF) using actually measured data of air void spacing was developed from this study. PSF and AMSF were compared and evaluated in this study by using the image analysis test result of concrete mixture. This study results showed that PSF and AMSF are generally similar, but AMSF had a larger value when PSF was greater than $400{\mu}m$. The results indicated a possibility of PSF giving false measurement estimation where the measurement is less than the actual value in the concrete mixture containing less air. Also, in the result of PSF and AMSF analysis according to the existence of entrapped air, AMSF showed a larger value in the analysis without entrapped air. But PSF showed a smaller value in the analysis without entrapped air, which was different from the actual case. Because PSF used average single spacing factor, it tended to give a false result. The study results showed that AMSF gave more accurate analysis results.

AN IMPROVED ELECTRICAL-CONDUCTANCE SENSOR FOR VOID-FRACTION MEASUREMENT IN A HORIZONTAL PIPE

  • KO, MIN SEOK;LEE, BO AN;WON, WOO YOUN;LEE, YEON GUN;JERNG, DONG WOOK;KIM, SIN
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.804-813
    • /
    • 2015
  • The electrical-impedance method has been widely used for void-fraction measurement in two-phase flow due to its many favorable features. In the impedance method, the response characteristics of the electrical signal heavily depend upon flow pattern, as well as phasic volume. Thus, information on the flow pattern should be given for reliable void-fraction measurement. This study proposes an improved electrical-conductance sensor composed of a three-electrode set of adjacent and opposite electrodes. In the proposed sensor, conductance readings are directly converted into the flow pattern through a specified criterion and are consecutively used to estimate the corresponding void fraction. Since the flow pattern and the void fraction are evaluated by reading conductance measurements, complexity of data processing can be significantly reduced and real-time information provided. Before actual applications, several numerical calculations are performed to optimize electrode and insulator sizes, and optimal design is verified by static experiments. Finally, the proposed sensor is applied for air-water two-phase flow in a horizontal loop with a 40-mm inner diameter and a 5-m length, and its measurement results are compared with those of a wire-mesh sensor.

Planting-Ability Properties of Porous Concrete as Gradation and Void Ratio (포러스콘크리트의 골재입도 및 공극률에 따른 식생능력평가)

  • 윤덕열;김정환;조영수;표구영;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.243-248
    • /
    • 2002
  • As a notion of environment protection changes throughout the world, construction engineers, as part of the effort to resolve environmental problems, have been actively doing research on environmental friendly porous concrete using large and non-uniform aggregate. Porous Concrete enables water and air to pass through a firmly hardened material and allows required nutrients to reach roots of plants. The purpose of this study is to analyze planting ability when the change of aggregate gradation and void ratio. The results of an experiment from the planting ability of the porous concrete to its influence on the compressive strength are reported in this paper. As a result of the experiment, the compressive strength is higher when the gradation of aggregate is smaller, and it also goes higher when the void ratio gets smaller The planting ability of porous concrete is decided by the germination and the grass length of Indigofera pseudo-tinctoria(IPT). The length of IPT is longer when the gradation of aggregate is greater and the void ratio gets smaller.

  • PDF