• Title/Summary/Keyword: air space thickness

Search Result 56, Processing Time 0.028 seconds

Noise Reduction Characteristics of a High-performance Air-gap Resonator (고효율 에어갭 공명기의 소음 저감 특성)

  • Kang, Sang-Wook;Lee, Jang-Moo;Lim, Won-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.118-124
    • /
    • 2004
  • The objective of the paper is to demonstrate the noise reduction characteristics of an air-gap resonator, which is composed of an air gap and a partition sheet. By means of installing the air-gap resonator in an enclosed cavity, acoustic resonance can be effectively suppressed using a small space. In particular, it is revealed from a simple, one-dimensional model that the air-gap resonator serves as the Helmholtz resonator that generally absorbs acoustic resonance energy at its resonance frequency. As a result, the air-8ap resonator also has a resonance frequency, which can be predicted with a simple frequency equation derived in the paper. Finally, verification experiments show that the air-gap resonator can be effectively designed by predicting a reasonable gap thickness using the simple frequency-equation.

A Numerical Study on the Flow and Heat Transfer Characteristics in a Kimchi Refrigerator (김치냉장고 내의 유동 및 열전달 특성에 관한 수치해석)

  • 윤준원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.1078-1087
    • /
    • 2003
  • Kimchi refrigerator is a household electric appliance developed with the wholly domestic technology for maturing and keeping kimchi. However, the principle of keeping is not yet revealed obviously. This numerical study has been conducted to investigate the flow and heat transfer characteristics in a kimchi refrigerator. The effects of arrangement variation of a evaporation tube are examined. Also, the heat transfer characteristics through the insulation material are discussed in detail. The flow and temperature field was simulated using the commercial code of CFX-5.3. A natural convection flow is formed through about 5/6 region from the bottom within the keeping space and accordingly, the 90% region of kimchi containers satisfies the temperature requirement with 0$\pm$0.5$^{\circ}C$. The stagnant flow exists in the upper 1/6 region of the keeping space and accordingly, the stratified high temperature distributions appear in the upper region of kimchi containers. The upward shift of the start location of a evaporation tube improves the temperature concentration toward $0^{\circ}C$ but the pitch variation is of no effect. The heat fluxes on the insulation surfaces show two-dimensional distributions with being higher toward the center. Through the variation of insulation thickness, 3.5% saving of insulation material is obtained under the same heat transfer rate.

A Study on the Development of Internodal Vascular Bundles and Air Spaces, and its Relationships to Panicle Characteristics of Rice Varieties (수도 절간의 유관속 및 통기공과 이삭 특성과의 관계)

  • Je-Cheon Chae;;Bong-Ku Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.29 no.4
    • /
    • pp.356-361
    • /
    • 1984
  • The experiment was carried out in order to investigate the development of vascular bundles and air spaces of rice internode, and its relationships to the panicle characteristics of rice varieties. The results obtained were as follows; The number of total vascular bundles in upper 1st internode was significantly different among varieties, but there was no remarkable differences among varieties and nodal positions below the 2nd internode. In the 5th internode 21-31 air spaces according to varieties was developed, however, no air space was found in upper 1st and 2nd internodes at maturing stage. Significant varietal difference of air space was observed in upper 4th internode. The number of vascular bundles, internodal thickness were positively correlated with panicle length, the number of rachis branches, and the spikelets in rice varieties.

  • PDF

Study on Deriving the Buckling Knockdown Factor of a Common Bulkhead Propellant Tank (공통격벽 추진제 탱크 구조의 좌굴 Knockdown Factor 도출 연구)

  • Lee, Sook;Son, Taek-joon;Choi, Sang-Min;Bae, Jin-Hyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.10-21
    • /
    • 2022
  • The propellant tank, which is a space launch vehicle structure, must have structural integrity as various static and dynamic loads are applied during ground transportation, launch standby, take-off and flight processes. Because of these characteristics, the propellant tank cylinder, the structural object of this study, has a thin thickness, so buckling due to compressive load is considered important in the cylinder design. However, the existing buckling design standards such as NASA and Europe are fairly conservative and do not reflect the latest design and manufacturing technologies. In this study, nonlinear buckling analysis is performed using various analysis models that reflect initial defects, and a method for establishing new buckling design standards for cylinder structures is presented. In conclusion, it was confirmed that an effective lightweight design of the cylinder structure for common bulkhead propulsion tank could be realized.

An Experimental Study on the Characteristics of Flame Stabilization in a Small Heat-Regenerative Combustor of Counter-Current Channels (대향류 채널 소형 열재생 연소기의 화염안정 특성에 관한 실험적 연구)

  • Cho, Sang-Moon;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.491-498
    • /
    • 2007
  • Flame characteristics of a methane-air premixed flame stabilized in a heat-regenerative small combustor were investigated experimentally. A small combustor having two counter-current shallow channels and a combustion space at one side was developed. In which the channel-gap was less the ordinary quenching distance of a stoichiometric methane-air premixed flame. Two design parameters of channel gap and thickness of the middle wall, which is located between two channels for unburned and burned gases, were varied. Flame stabilization conditions and characteristic flame behaviors were experimentally examined. Conclusively, Blowout conditions were governed mostly by the scale of the combustion space, and flashback conditions into the channel are dominated by the channel gap. Surface temperatures of the combustor were between 100 to 500$^{\circ}C$. Additionally, two distinctive flame stabilization modes of radiation and well-stirred?reaction were observed and their applicability was discussed.

Fabrication of Electrochemical Sensor with Tunable Electrode Distance

  • Yi, Yu-Heon;Park, Je-Kyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • We present an air bridge type electrode system with tunable electrode distance for detecting electroactive biomolecules. It is known that the narrower gap between electrode fingers, the higher sensitivity in IDA (interdigitated array) electrode. In previous researches on IDA electrode, narrower patterning required much precise and expensive equipment as the gap goes down to nanometer scale. In this paper, an improved method is suggested to replace nano gap pattering with downsizing electrode distance and showed that the patterning can be replaced by thickness control using metal deposition methods, such as electroplating or metal sputtering. The air bridge type electrode was completed by the following procedures: gold patterning for lower electrode, copper electroplating, gold deposition for upper electrode, photoresist patterning for gold film support, and copper etching for space formation. The thickness of copper electroplating is the distance between upper and lower electrodes. Because the growth rate of electroplating is $0.5{\mu}m\;min^{-1}$, the distance is tunable up to hundreds of nanometers. Completed electrodes on the same wafer had $5{\mu}m$ electrode distance. The gaps between fingers are 10, 20, 30, and $40{\mu}m$ and the widths of fingers are 10, 20, 30, 40, and $50{\mu}m$. The air bridge type electrode system showed better sensitivity than planar electrode.

Empirical Research for the Sound Insertion Loss of Panels (다중 페널의 차음성능에 대한 실험적 연구)

  • Ko, Kang-Ho;Kook, Hyung-Seok;Kim, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.198-203
    • /
    • 2001
  • This paper discusses an experimental method for measuring the insertion loss (IL) performance of a double panel that are used in vehicles. Instead of two adjacent reverberation chambers which are generally used to measure the transmission loss (TL) of the large sound isolation materials, air-borne sound insulation tester was utilized to determine the IL and articulation index (AI) of standardized deadening materials. In comparison to reverberation chamber method, air-borne sound insulation tester method is more space-saving, more time-saving and more simple to the automotive acoustics. From the empirical results, it is verified that the performance of deadening materials is closely connected with thickness of panels, type of filling material that is filled into a double panel, and area ratio of double panel.

  • PDF

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

Prediction of Vibration Characteristics of a Composite Rotor Blade via Deep Neural Networks (심층신경망을 이용한 복합재 로터 블레이드의 진동특성 예측)

  • Yoo, Seungho;Jeong, Inho;Kim, Hyejin;Cho, Haeseong;Kim, Taejoo;Kee, Youngjung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.317-323
    • /
    • 2022
  • In this paper, a deep neural network(DNN) model for predicting the vibration characteristics of the composite rotor blade with c-spar cross section was developed. Herein, the present DNN model is defined by using the natural frequencies obtained through the in-house code based on the nonlinear co-rotational(CR) shell element. For the present DNN model, the accuracy of the model was evaluated via the data with a random distribution of thickness and a tendency to decrease in thickness along the blade span.

Numerical Analysis on the Increasing Temperature Characteristics of Vaporizer Fin for Liquefied Natural Gas with Super Low Temperature (초저온 액화 천연 가스용 기화기 핀의 승온 특성에 관한 수치 해석)

  • Yi, C.S.;Kong, T.W.;Lee, H.D.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • This study is numerical analysis on the increasing temperature characteristics of vaporizer fin for liquefied natural gas with super low temperature. Existing LNG vaporizers use the direct contact heat transfer mode where the extreme super low temperature LNG of $-162^{\circ}C$ flows inside of the tubes and about $20^{\circ}C$air flows on outside of the fin. Recently, the vaporizers with great enhanced performance compared to conventional type have been developed to fulfill these requirements. The vaporizing characteristic of LNG vaporizer with air as heat source has a fixed iced. These characteristic cause a low efficiency in vaporizer, total plant cost and installing space can be increased. The vaporizing characteristics of LNG via heat exchanger with air are analytically studied for an air heating type vaporizer. This study is intended to supply the design data for the domestic fabrication of the thickness and angle vaporizer fin. Governing conservation equations for mass, momentum and energy are solved by STAR-CD based on an finite volume method and SIMPLE algorithm. Calculation parameter is fin thickness, setup angle and LNG temperature. If the vaporization performance of the early stage and late stage of operating is considered, the case of ${\phi}=90^{\circ}$ was very suitable. In this paper was estimated that the heat transfer was most promoted in case of THF=2mm.

  • PDF