• Title/Summary/Keyword: air source heat

Search Result 606, Processing Time 0.031 seconds

A Study on the Performance Improvement of a Simultaneous Heating and Cooling Water Source Heat Pump System by Controlling of the Refrigerant Flow Rate in an Outdoor Unit (수열원 냉난방 동시형 히트펌프 시스템의 실외 열교환기 유량제어를 통한 성능개선에 관한 연구)

  • Bae, Heung Hee;Lee, Dong Hyuk;Lee, Sanghun;Kim, Byengsoon;Ahn, Young Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.131-136
    • /
    • 2013
  • The present study has conducted cycle design and control technology of a water source VRF heat pump system. Previously, study of a simultaneous heating and cooling in an air source VRF heat pump system has been conducted. However, performance data and design methods for simultaneous heating and cooling in a water source VRF heat pump system are limited in the literature, due to various system parameters and operating conditions. In this study, the operating characteristics and performances of a simultaneous heating and cooling heat pump system are carried out, in simultaneous operation modes. Control logics of an EEV are developed for flow rate control to the outdoor unit, and are verified. When the control logics are applied, the simultaneous cooling and heating performances are sufficiently achieved, and system COPs are increased by up to 23.4%.

Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System (물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구)

  • Hong, Boo-Pyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

A Study on the Performance Evaluation of Combined Heat Pump System according to the Ratio of Ground Heat Source and Water Heat Source (지열원 및 수열원 비율에 따른 복합열원 히트펌프시스템 성능 평가 연구)

  • Park, Sihun;Ko, Yujin;Min, Joonki
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.2
    • /
    • pp.11-19
    • /
    • 2021
  • In this study, combined heat source heat pump system was implemented with 4 single heat source heat pumps each applied with a geothermal source and a water source. Five cases (Case1~Case5) were configured to conduct a performance comparison and analysis of the combined heat source heat pump system. First of all, as a result of analyzing the heat source, the case when 4 ground heat sources were applied (Case1) showed a uniform EST(Entering Source Temperature) distribution throughout the year since it is less affected by outside air compared to the case when 4 water heat sources were applied (Case5). In both winter and summer, the ground heat source maintained higher EST than the water heat source. Therefore, the system with high ratio of geothermal sources is advantageous for heating, and with high ratio of water heat sources is advantageous for cooling.

A study on the application Heat Pump to Rolling Stock Air conditioner (히트펌프식 냉난방장치의 철도차량 적용에 관한 연구)

  • Kweon, Tae-Kyun;Song, Young-Jeong;Jeong, Gwang-Moo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1689-1696
    • /
    • 2008
  • Heat pumps transfer heat by circulating a substance called a refrigerant through a cycle of evaporation and condensation. But Heat pumps system by only using heat-source is not efficient. Because the mean temperature of North Korean winter season is low, economy of air heat-source heat pump descend. This paper is practiced the simulation on evaluation criteria for Heat pump heating and cooling systems to Rolling Stock. Efficiency of the heat pump in order improving from certainly the development of the technique will be able to prevent a freezing actual condition must proceed. As a result, Below $-10^{\circ}C$ used heating and cooling systems of heat pump format even in cold winter season and is serviceable confirmed with heat source supply circle of the Rolling Stock.

  • PDF

A Numerical Analysis on the Natural Convect ion of the Square Channel inner from the Horizontal Plate with Protruding Heat Source (사각 채널 내에서 열원이 부착된 수평 평판에서 자연대류의 수치해석)

  • Kim Byung-Chul;Ju Dong-IN
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.487-490
    • /
    • 2002
  • The real chip and similarity model were used to investigate the thermal behavior and velocity distribution of air from the heat source with the location and the amount of heat experimentally and numerically, and compared. The heat generated in the block is not cooled by convection and show the high temperature by the stagnation of heat flow. After maintaining the high temperature of block by the natural convection, the sudden drop of temperature with the air flow was shown in the channel but the decreasing rate was small with the time. The inward block was effected by infinitesimal air flow generated between block and channel and outward block was effected by the entry condition.

  • PDF

Comparison of Energy Performance between Ground-Source Heat Pump System and Variable Refrigerant Flow(VRF) Systems using Simulation (시뮬레이션을 통한 지열 히트펌프 시스템과 VRF 시스템의 에너지 성능비교)

  • Sohn, Byonghu;Lim, Hyojae;Kang, Seongjae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.3
    • /
    • pp.30-40
    • /
    • 2021
  • This paper compares the annual energy performance of four different types of air-conditioning systems in a medium-sized office building. Chiller and boiler, air-cooled VRF, ground-source VRF, and ground-source heat pump systems were selected as the systems to be compared. Specifically, the energy performance of the GSHP system and the ground-source VRF system were compared with each other and also with conventional HVAC systems including the chiller and boiler system and air-cooled VRF system. In order to evaluate and compare the energy performances of four systems for the office building, EnergyPlus, a whole-building energy simulation program, was used. The EnergyPlus simulation results show that both the GSHP and the ground-source VRF systems not only save more energy than the other two systems but also significantly reduce the electric peak demand. These make the GSHP and the VRF systems more desirable energy-efficient HVAC technologies for the utility companies and their clients. It is necessary to analyze the impact of partial load performance of ground-source heat pump and ground-source VRF on the long-term (more than 20 years) performance of ground heat exchangers and entire systems.

Heating Performance of a Ground Source Multi-Heat Pump for a Greenhouse (지열원 멀티 열펌프 시스템의 시설원예 적용 난방성능 특성 실증 연구)

  • Kang, Shin-Hyung;Choi, Jong-Min;Moon, Je-Myung;Kwon, Hyung-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.337-344
    • /
    • 2010
  • Good plant-growth conditions can be achieved by means of using greenhouses. One of the main issues in greenhouse cultivation is energy savings through the development of high efficient heating and cooling system. GSHPs are one of the recommended systems to cope with this pending need. The aim of this study is to investigate the heating performance of ground source multi-heat pump system installed in a greenhouse under part load conditions. Daily average heating COP of the heat pump unit was very high by at least 7.4, because of relatively large condenser, evaporator, and mass flow rate through ground loop heat exchanger. However, the system COP, overall heating coefficient of the performance of the system with heat pump unit and GLHX, decreased drastically due to relatively large power consumption of circulating pump under part load condition. It is suggested that the technology to enhance the performance of the ground source multi-heat pump system for a greenhouse under part load conditions should be developed.

Heat source control intelligent system for heat treatment process

  • Lee, JeongHoon;Cho, InHee
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.28-40
    • /
    • 2022
  • Although precise temperature control in the heat treatment process is a key factor in process reliability, there are many cases where there is no separate heat source control optimization system in the field. To solve this problem, the program monitors the temperature data according to the heat source change through sensor communication in a recursive method based on multiple variables that affect the process, and the target heat source value and the actual heat treatment heat source to match the internal air temperature and material temperature. A control optimization system was constructed. Through this study, the error rate between the target temperature and the atmosphere (material surface) temperature of around 10.7% with the existing heat source control method was improved to an improved result of around 0.1% using a process optimization algorithm and system.

Evaluation of Spreading Thermal Resistance in Symmetrical Four-Heat Generating Electronic Components (4개 대칭배열 발열 전자소자에서의 확산 열저항 산정)

  • Kim Yun-Ho;Kim Seo-Young;Rhee Gwang-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.8
    • /
    • pp.664-671
    • /
    • 2006
  • We propose the correlation to predict the spreading thermal resistance on a plate with symmetrical four heat sources. The correlation transforms four heat sources to a single equivalent heat source and then the spreading thermal resistance can be obtained with the existing equation for a single heat source. When the four heat sources are mounted on a square base plate, the correlation is expressed as a function of the heat source size, the length of base plate, the plate thermal conductivity and the distance between heat sources. Compared to the results of three-dimensional numerical analysis, the spreading thermal resistance by the proposed correlation is in good agreement within 10 percent accuracy.

A Study on the Airflow near the Cold Heat Source Using CFD in Merchandising Store (CFD를 이용한 대형매장 냉열원 주변의 공기유동에 관한 연구)

  • Cho Sung Woo;Park Min Young;Im Young Bin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.7
    • /
    • pp.629-634
    • /
    • 2005
  • This paper performed to predict vertical temperature distribution and air flow near cold heat source in the mass merchandising store. At the height of 150 cm, the vertical air temperature difference between the results of CFD and of measurement field showed $10\%$ near the refrigeration zone and $8.8\%$ near the freezing zone. Therefore, it regarded as appropriate for the using CFD to investigate airflow near the heat sources. The 3 kinds of CFD model were divided by the disposition of diffuser/exhaust and diffuser air temperature. At the refrigeration and freezing zone in the Model 2 and 3, the temperature difference between the front and the back of human model were showed $6.8^{\circ}C\;and\;3.9^{\circ}C$ with diffuser air temperature $17^{\circ}C$ and were showed $6.8^{\circ}C$ and $4^{\circ}C$ with diffuser air temperature $19^{\circ}C$.