• 제목/요약/키워드: air source heat

검색결과 606건 처리시간 0.03초

공기, 지열 및 복합 열원 열펌프의 중간기 에너지 소비량에 관한 연구 (Study on Energy Consumption of Air-source, Ground-source and Dual-source Heat Pump during Intermediate Season)

  • 조영욱;우태호;정광섭;김영일
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-7
    • /
    • 2013
  • This study is to compare energy consumption of air-source, ground-source and dual-source heat pump systems during intermediate season using dynamic simulation. Ground-source heat pump has higher COP than that of air-source but requires additional power consumption of auxiliary equipment such as circulation pump. During intermediate season when the outdoor air temperature is favorable, total COP of air-source heat pump may be greater than that of ground-source when circulation pump power consumption is included. Dual-source heat pump which selects the more favorable heat source is compared with air-source only and ground-source only heat pumps for total power consumption. Results show that power consumption of dual-source heat pump is lower than that of ground-source only by 0.73%.

정수장 내 원수열원 및 공기열원 히트펌프의 냉난방 운전 특성 (Cooling and Heating Operation Characteristics of Raw-water Source Heat Pump and Air Source Heat Pump in Water Treatment Facility)

  • 오선희;윤린;조용
    • 설비공학논문집
    • /
    • 제25권7호
    • /
    • pp.386-391
    • /
    • 2013
  • The dynamic characteristics of both raw-water source and air source heat pump utilized in water treatment facilities were investigated by using TRNSYS simulator. The modeling of the raw water source heat pump was verified by the measured data at the Cheongju water treatment facility, and the modeling at the air source heat pump was verified by the data from the Siheung water treatment facility. The average heating and cooling COPs from the raw-water source heat pump were higher than those of the air source heat pump by 19% and 18%, respectively. The power consumptions of the air source heat pump for the cooling and the heating were higher than those of the raw water source heat pump by 28% and 26%, respectively.

SUDS증발기를 사용한 2중열원 열펌프의 성능해석 (Performance analysis of dual source heat pump system with single unit dual source evaporator)

  • 우정선;이세균;이재효;박효순
    • 설비공학논문집
    • /
    • 제11권3호
    • /
    • pp.391-400
    • /
    • 1999
  • The efficiency and capacity of an air source heat pump system decrease as the ambient temperature drops. One strategy of avoiding the decrease of the efficiency and capacity in air source heat pump system is to switch to another thermal energy source. Water can be a good candidate for the heat source. This paper presents the results of the performance analysis of heat pump system with a single unit dual source(SUDS) evaporator The heat exchanger combines two separated evaporators into a single evaporator and the object of the SUDS evaporator is to recover energy from dual heat sources, i.e. air and water. Simulation program is developed for the dual source heat pump system with a SUDS evaporator and experimental data are obtained and compared with the simulation results. Differences in heating capacity and COP are 7% and 8% respectively. Simulation results are in good agreement with the test results. Therefore, the developed program is effectively used for the design and performance prediction of the dual source heat pump system with a SUDS evaporator.

  • PDF

공동주택의 공기열원 히트펌프 적용가능성 검토를 위한 운전성능 및 탄소배출량 평가 (Evaluation of Operational Performance and Carbon Emissions for the Feasibility of Air Source Heat Pump Application in Residential Buildings)

  • 김준석;김종수;전용석
    • 한국지열·수열에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.24-36
    • /
    • 2024
  • This study analyzed the feasibility of the air source heat pump in residential buildings based on operational performance and carbon emissions. The operational performance and carbon emissions were compared between a gas boiler and an air source heat pump by calculating the annual heating and hot water load based on the 21A and 36A models for actual residential buildings. For the operational performance of the air source heat pump, the lowest (2.3) and highest COP (5.9) were attained during the winter and summer seasons, respectively. The carbon emissions depend on the amount of energy consumed during operations. An air source heat pump consumed 65.10% and 65.4% less energy per year in the 21A and 36A models, respectively compared to the existing gas boiler. Consequently, for air source heat pump carbon emissions were also reduced by 13.3% and 15.1% per year for the 21A and 36A models, respectively. It shows the effectiveness of applying an air source heat pump compared to an existing gas boiler.

병원 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구 (Study on the Simulation of Heat Pump Heating and Cooling Systems to Hospital Building)

  • 최영돈;한성호;조성환;김두성;엄철준
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.275-282
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large hospital building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.

숙박업소 건물의 히트펌프 냉난방 시스템 적용을 위한 시뮬레이션 연구 (Study on the Simulation of Heat Pump Heating and Cooling Systems to Resident Building)

  • 최영돈;한성호;조성환;김두성;엄철준
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.65-74
    • /
    • 2008
  • In Korea, air source heat pump system is less efficient than conventional heat source facilities, such as ground source, river water, because the air temperature in winter season is so low that COP of air source heat pump system drops below 3.0. Therefore, the study on the application of heat pump heating and cooling systems is crucial for the efficient popularization of heat pump. In this work, we present the dynamic analysis of energy consumption for the large resident building by heat resistance-capacitance method. The system simulation of water storage air source heat pump is additionally performed by changing of sizes and locations of the hospital building. The computed results show that energy cost of water storage air source heat pump is low, so it is more economical than absorption chiller & heater.

On-site Performance Test and Simulation of a 10 RT Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권2호
    • /
    • pp.61-69
    • /
    • 2004
  • In this study, on-site performance test of an air source heat pump which has a rated capacity of 10 RT is carried out. Since indoor and outdoor air conditions can not be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance of the heat pump for other conditions, the heat pump is modeled with a small number of characteristic parameters. The values of the parameters are determined from the few measurements measured on-site during steady operation. A simulation program is developed to calculate cooling capacity and power consumption at any other arbitrary operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

10RT급 공기열원 열펌프의 현장 성능측정 및 예측 (In-situ Performance Test and Prediction of a 10 RT Air Source Heat Pump)

  • 김영일;백영진;장영수
    • 설비공학논문집
    • /
    • 제14권3호
    • /
    • pp.221-230
    • /
    • 2002
  • In this study, in-situ performance test of an air source heat pump which has a arted capacity of 10 RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. To estimate the performance for other conditions, he heat pump is modeled with a small number of selected parameters. The values of the parameters are determined from the few measurements measured on-site during normal operation. A simulation program is developed to calculate cooling capacity and power consumption t any other operating conditions. The simulation results are in good agreement with the experiment. This study provides a method of an on-site performance diagnosis of an air source heat pump.

하천수 열원 열펌프 시스템의 성능 특성 및 경제성 평가 (Performance Characteristics and Economic Assessment of a River Water: Source Heat Pump System)

  • 박차식;정태훈;박홍희;김용찬
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.621-628
    • /
    • 2009
  • The objectives of this study are to analyze the performance of a river water-source heat pump and to carry out economic assessment for the heat pump. The COP of the river water-source heat pump was 3-21% higher than that of the air-source heat pump because river water provides stable operating temperature compared with air temperature throughout the year. The economic analysis was carried out by comparing the initial and operating cost of the river water-source heat pump with those of the conventional air-source heat pump. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.5 years when the capacity of the river water-source heat pump was larger than 10 RT.

공기 및 지열 이용 Dual-Source 히트펌프 시스템의 성능실험 및 경제성 분석 (The Performance Test and the Feasibility Study for a Dual-Source Heat Pump System Using the Air and Ground Heat Source)

  • 남유진;채호병
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.212-217
    • /
    • 2014
  • Recently, the use of renewable energy has been increased due to growing concern on the energy-saving at buildings and the reduction of $CO_2$ emission. In the field of architecture, to reduce the energy consumption of heating, cooling and hot water supply, heat pump systems with renewable energy has been developed and used in various applications. However, there have been many of researches on the large-scale commercial heat pump systems, but the research and the field application of a compact heat pump system is rare. Therefore, in order to develop the compact heat pump for the small-scale residential building, this study conducted the performance test and feasibility study for a hybrid heat pump using the heat source of air, solar and ground. In the results of experiments through a trial product, the average COP of cooling mode with ground heat source was 4.75, and it of heating mode was 4.03. Furthermore, the average COP of cooling mode with air heat source was 2.60, and it of heating mode was 2.92. Finally, payback period of the system was calculated as 9.2 years.