• Title/Summary/Keyword: air quality concentrations

Search Result 712, Processing Time 0.025 seconds

Temporal distribution, influencing factors and pollution sources of urban ambient air quality in Nanchong, China

  • Zhou, Hong;Li, Youping;Liu, Huifang;Fan, Zhongyu;Xia, Jie;Chen, Shanli;Zheng, Yuxiang;Chen, Xiaocui
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.260-267
    • /
    • 2015
  • The $PM_{10}$, $SO_2$ and $NO_2$ mass concentrations were obtained over five years from monitoring stations across Nanchong, a southwest city in China. Changes in urban air quality over time, as well as the factors influencing that change, were evaluated based on air pollutant concentrations, the Air Pollution Index (API), and the Comprehensive Pollution Index (P). The results showed that the total annual mean $PM_{10}$, $SO_2$ and $NO_2$ concentrations over the five years studied were $61.1{\pm}1.1$, $45.0{\pm}3.9$ and $34.9{\pm}4.9{\mu}g{\cdot}m^{-3}$, respectively. The annual mean concentrations displayed a generally decreasing trend; lower than the annual mean second-level air quality limit. Meanwhile, the annual mean API values were in a small range of 52-53, the air quality levels were grade II, and P values were 1.06-1.21 less than the slight level ($P{\leq}1.31$). Total monthly mean $PM_{10}$, $SO_2$, $NO_2$ concentrations, and API and P values were consistently higher in winter and spring than during autumn and summer. The results of a correlation analysis showed that temperature and pressure were the major meteorological factors influencing pollution levels. Pollution sources included industrial coal and straw burning, automobiles exhaust and road dust, fireworks, and dust storms.

Airborne Measurements of Ozone and Its Precursors over Yeosu-Gwangyang Industrial Areas in the Southern Coast of Korea

  • Kim, So-Young;Seo, Seok-Jun;Park, Hyun-Ju;Son, Jung-Seok;Park, Ji-Hoon;Kim, Jong-Choon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.139-151
    • /
    • 2013
  • The purpose of this study is to understand distributional characteristics in the atmospheric concentrations of $O_3$ and its precursors based on data taken at the southern Korean coast. The average $O_3$ concentration in the high altitude was found to range from 32.3 to 90.8 ppb with a maximum concentration of 132 ppb. The ambient $O_3$ concentration was high at altitudes of 1000 m and 500 m above the southern sea near Gwangyang Bay and an industrial area containing emission sources. The daily mean concentrations of $NO_y$ and CO were 6.7-24.2 ppb and 0.152-0.487 ppm, respectively. During the aerial measurement period, the highest mean concentration of $O_3$ was observed on June 1. The aerial measurement results showed that the maximum ozone concentration was observed to be 132 ppb in the high altitude the southernmost part of Yeosu. The measurement of vertical wind fields in the air indicated that $O_3$ formed in the southernmost part of Yeosu was transported by strong southwesterly winds to the northeast of Gwangyang Bay. This led to a ground $O_3$ concentration of over 100 ppb in Jinju, the northeastern part of Gwangyang Bay. On August 9, when the maximum $O_3$ concentration was 50 ppb, the measurement results showed that $O_3$ concentrations were relatively low compared to other days. In particular, low $NO_2$ and TVOC concentrations were observed, both of which serve to form $O_3$ in photochemical reactions.

A study of the Effects of Siberian Wildfires on Ozone Concentrations over East Asia in Spring 2003 (시베리아 산불이 2003년 봄철 동아시아 오존 농도에 끼치는 영향 연구)

  • Park, Rokjin;Jeong, Jaein;Yun, Daeok
    • Atmosphere
    • /
    • v.19 no.3
    • /
    • pp.227-235
    • /
    • 2009
  • Global climate warming induced by long-lived greenhouse gases is expected to cause increases in wildfire frequencies and intensity in boreal forest regions of mid- and high-latitudes in the future. Siberian forest fires are one of important sources for air pollutants such as ozone and aerosols over East Asia. Thus an accurate quantification of forest fire influences on air quality is crucial, in particular considering its higher occurrences expected under the future warming climate conditions. We here use the 3-D global chemical transport model (GEOS-Chem) with the satellite constrained fire emissions to quantify Siberian fire effects on ozone concentrations in East Asia. Our focus is mainly on spring 2003 when the largest fires occurred over Siberia in the past decade. We first evaluated the model by comparing to the EANET observations. The model reproduced observed ozone concentrations in spring 2003 with the high $R^2$ of 0.77 but slightly underestimated by 20%. Enhancements in seasonal mean ozone concentrations were estimated from the difference in simulations with and without Siberian fires and amounted up to 24 ppbv over Siberia. Effects of Siberian fires also resulted in 3-10 ppbv incresases in Korea and Japan. These increases account for about 5-15% of the ozone air quality standard of 60 ppbv in Korea, indicating a significant effect of Siberian fires on ozone concentrations. We found however that possible changes in regional meteorology due to Siberian fires may also affect air quality. Further study on the interaction between regional air quality and meteorology is necessary in the future.

A Study of Indoor Air Quality of Public Facilities in Chung-Nam Area (충남지역 미적용 다중이용시설의 실내공기질에 관한 연구)

  • Hong, Sung-Chul;Jou, Hye-Mee;Cho, Tae-Jin;Lee, Che-Won;Jung, Yong-Taek;Son, Bu-Soon
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.35-45
    • /
    • 2008
  • In order to recommend criteria for the administration law on indoor air quality, this study was conducted to examine the distribution and the concentration of indoor air pollutants ($PM_{10},\;CO_2$, CO, HCHO, TBC, $NO_2$, Rn, VOCs, asbestos, $O_3$) in public facilities in the Chung-Nam area. The concentrations of indoor air pollutants were obtained from sixty seven public facilities such as a cinema, an office, a restaurant, a theater and an academy. This study was performed from August to December, 2005. The results of this study showed that the concentrations of indoor air pollutants such as $PM_{10},\;CO_2$, CO, HCHO, TBC, Rn and $O_3$ were less than the recommended limits. However, the average concentration of VOCs was $521.73{\mu}g/m^3$ (GM : $221.69{\mu}g/m^3$), which was higher than the recommended limit of $400{\mu}g/m^3$. Moreover, the average concentration of $NO_2$ was 345.66ppb (GM : 69.95ppb), which was higher than the recommended limit of 50 ppb. The correlation between the concentrations of indoor air pollutants and the type of facilities with respect to $CO_2$, TBC and Rn was statistically low (p<0.05). However, the correlation was high in terms of the CO and $O_3$ concentrations (p<0.01). No relationship between the indoor air pollutants and the type of facilities was observed for $PM_{10}$, VOCs and $NO_2$. The year of construction was compared to the concentrations of indoor air pollutants. Specifically, when the construction date was less than 3 years, the HCHO, VOCs and TBC concentrations were $44.75{\mu}g/m^3,\;555.07{\mu}g/m^3$ and $337.79CFU/m^3$, respectively. These concentrations were $120{\mu}g/m^3$ and $211.84CFU/m^3$ higher for VOCs and TBC than the concentrations obtained from the facilities more than 3 years. However, the concentration of HCHO was similar between the facilities older and younger than 3 years of age. Year, temperature, humidity and indoor air pollutant correlation analyses showed that temperature and humidity, temperature and TBC, temperature and $O_3,\;PM_{10}$ and $NO_2$, HCHO and VOCs, $CO_2$ and Rn had positive relationships. However temperature and Rn, humidity and $CO_2,\;CO_2$ and $O_3,\;O_3$ and Rn had negative relationships. Accordingly, it will be necessary to manage the factors affecting indoor air quality so that the residents can have a more comfortable and healthier living environment. Ultimately, the results of this study are expected to be utilized as baseline data.

Assessing the Health Benefits of the Seoul Air Quality Management Plan Using BenMAP

  • Park, Jeong-Im;Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.571-577
    • /
    • 2006
  • Health benefits from implementing air quality control measures were assessed using the Environmental Benefits Mapping and Analysis Program (BenMAP). BenMAP developed by US EPA is a GIS-based software tool that estimates the health impacts and associated economic values connected with changes in ambient air pollution. Once a set of BenMAP-required data was collected, the health benefits from implementing Seoul Air Quality Management Plan (SAQMP), an official AQ improvement plan for Seoul Metropolitan Area, was assessed using BenMAP. The PM10 concentrations assuming the SAQMP implemented successfully were predicted with the MM5 (Mesoscale Meteorological model version 5)/CMAQ (Community Multiscale Air Quality) model. A PM 10 exposure related premature mortality function was adopted trom a well-known epidemiology study. Economic valuation functions driven from benefit transfer methods were utilized. Through the SAQMP, PM10 concentrations were estimated to be lowered by $15{\mu}g/m^3\;to\;75{\mu}g/m^3$ depending on air quality modeling grids. 5,569 premature deaths (95% CI $3,264{\sim}7,809$ deaths) could be avoided in the Seoul Metropolitan Area. The economic value of the deaths avoided was estimated to $13.2 billion $(95%\;CI\;$890\;million{\sim}$28.2\;billion)$ using the benefit transfer value. BenMAP could be a useful tool for developing effective air quality improvement policy, enabling the policy makers to anticipate the effects of regulatory changes on people's health and the economy.

Diurnal Variation of $PM_{10}$ Concentrations in Library and Student Buildings using Scattering Light Integrated Type Digital Dust Indicator (산란광 광량 적산시 Digital Dust Indicator에 의한 도서관과 학생회관내 $PM_{10}$ 농도의 일변화)

  • 김만구;권영진;정영림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • Diurnal variation of $PM_{10}$ concentration was investigated for 24 sites in library including reading room, bookstock room, lobby, office and so on, and 9 sites in student building at Kangwon National University using scattering light integrated type digital dust indicator. The dimensional conversion factors for mass concentrations (K) were determined by comparing between the $PM_{10}$ concentrations collected by $PM_{10}$ hig volume air sampler and the digital dust indicator. The dimensional conversion factor (K) was 3.33 for indoor air in this experiment. The highest concentrations were 649 $\mug/m^3$/day for smoking room in the library and 242 $\mug/m^3$/day for circle room in the student building. Most of spaces in the library except a office and bookstock rooms were over 150 $\mug/m^3$/day of $PM_{10}$ concentrations and 6 indoor spaces were over the guideline for indoor air quality in student building except a health center and two restaurants. Therefore, it should be required to make an improvement on the indoor air quaility for public facilities in the university buildings.

  • PDF

Perceived Air Quality Assessment of Occupants According to Indoor Air Quality (실내공기질에 따른 재실자의 인식성 공기질 평가)

  • Woo, Byung-Lyul;Lee, Hyun-Su;Ahn, Ho-Gi;Jung, Soon-Won;Hwang, Moon-Young;Park, Choong-Hee;Yu, Seung-Do;Yang, Won-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Perceived air quality (PAQ) is defined as evaluation of indoor air satisfaction and comfortable sensory by occupants. However, there are differences between criteria of indoor pollutants and lowest sensory thresholds. In this study, we compared indoor PAQ by questionnaire with measured benzene, toluene and nitrogen dioxide ($NO_2$) concentrations in home indoors. The $NO_2$ concentration was the highest in Seoul, while benzene and toluene were the highest in Asan. Average PAQ score in winter was higher than that in summer. Significant correlations between PAQs of home indoor air pollution and measured pollutant concentrations were not shown and correlation coefficients (r) ranged between -0.453

Investigation on the Validation for Designating Air Quality Control Region among Provincial Cities by the Data Measured with Air Quality Monitoring Network (대기오염 측정 자료에 의한 지방도시의 대기환경규제지역 설정에 관한 타당성 검토)

  • Yu, Mee-Seon;Yang, Sung-Bong;Woo, Kyung-Bin
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.181-190
    • /
    • 2016
  • Regional air quality regulation is a system that allows the Minister of Environment to designate the local area as air quality control region where the concentrations of air pollutants are exceeding the environmental standards, and the local governments that administrate the regulated area have to develop and practise a plan for reducing the air pollutants. From the data observed yearly by the monitoring stations in 8 provincial cities with more than 0.5 million people was judged the compliance with air quality standards in each municipality for the period of 2003 to 2013. As the result of investigation on air pollutants concentrations of each city, it was found that there was no station that exceeds the ambient air quality standards of CO, $SO_2$ and 24-hour $NO_2$. But all municipalities exceeded the standards of 8-hour $O_3$, annual and 24-hour $PM_{10}$, and therefore 8 municipalities can be designated to be under the local air regulation. For the annual $NO_2$ were the monitoring sites necessary requirements for designation of the air quality regulation region in Cheongju, Cheonan, Daejeon and Gwangju area. Incase of 1-hour $O_3$, some of stations in Pohang, Cheongju, Cheonan and Changwon area were over the designation standards for the air quality control region.

Seasonal and Locational Concentrations of Particulate Air Pollutants in Indoor Air of Public Facilities in Taegu Area (대구지역 공중위생법 규제대상시설의 실내공기중 입자상 오염물질의 계절별 및 지점별 농도분포 특성)

  • 백성옥;송희봉
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.163-176
    • /
    • 1998
  • In this study, airborne particle samples were obtained to determine the concentrations of particulate air pollutants in indoor and outdoor air of public facilities in Taegu area. Total of 12 public facilities, regulated by the Public Sanitary Law, were selected as sampling sites, which include three underground arcades, one railway and two bus terminals, three general hospitals, and three department stores. In each place, sampling was carried out seasonally during the period of October 1994 to July 1995, and four samples per each site per season were collected both indoors and outdoors simultaneously. After determination of suspended particulate matter (SPM) mass concentrations, the particle samples were divided into two parts for subsequent chemical analysis: one for the analysis of trace elements and the other for water soluble ions. Seasonal levels of SPM appeared to be the highest in spring and the lowest in summer both indoors and outdoors, while locational variations of highest in statioyterminals, and lowest in department stores . SPM concentrations indoors and outdoors did not show any significant differences each other in most places . However, there were significant correlations between indoor and outdoor levels of SPM and other chemical species . These results indicates that indoor SPM levels are likely to be significantly affected by outdoor sources in many places. The most significant source of SPM was estimated to be the resuspension of soil/road dust both indoors and outdoors . The concentrations of toxic heavy metals (Pb, Cd, Cr, Cu) in underground arcades appeared to be very much lower than the established air quality guidelines for underground environments. In addition, it is likely that micro-environmental parameters such as temperature, humidity, and air velocity, play a less significant role than outdoor air quality as a factor affecting the levels of particulate pollutants in indoor environments of public facilities in Taegu area.

  • PDF

Evaluation of the Simulated PM2.5 Concentrations using Air Quality Forecasting System according to Emission Inventories - Focused on China and South Korea (대기질 예보 시스템의 입력 배출목록에 따른 PM2.5 모의 성능 평가 - 중국 및 한국을 중심으로)

  • Choi, Ki-Chul;Lim, Yongjae;Lee, Jae-Bum;Nam, Kipyo;Lee, Hansol;Lee, Yonghee;Myoung, Jisu;Kim, Taehee;Jang, Limseok;Kim, Jeong Soo;Woo, Jung-Hun;Kim, Soontae;Choi, Kwang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.306-320
    • /
    • 2018
  • Emission inventory is the essential component for improving the performance of air quality forecasting system. This study evaluated the simulated daily mean $PM_{2.5}$ concentrations in South Korea and China for 1-year period (Sept. 2016~Aug. 2017) using air quality forecasting system which was applied by the emission inventory of E2015 (predicted CAPSS 2015 for South Korea and KORUS 2015 v1 for the other regions). To identify the impacts of emissions on the simulated $PM_{2.5}$, the emission inventory replaced by E2010 (CAPSS 2010 and MIX 2010) were also applied under the same forecasting conditions. These results showed that simulated daily mean $PM_{2.5}$ concentrations had generally suitable performance with both emission data-sets for China (IOA>0.87, R>0.87) and South Korea (IOA>0.84, R>0.76). The impacts of the changes in emission inventories on simulated daily mean $PM_{2.5}$ concentrations were quantitatively estimated. In China, normalized mean bias (NMB) showed 5.5% and 26.8% under E2010 and E2015, respectively. The tendency of overestimated concentrations was larger in North Central and Southeast China than other regions under both E2010 and E2015. Seasonal differences of NMB were higher in non-winter season (28.3% (E2010)~39.3% (E2015)) than winter season (-0.5% (E2010)~8.0% (E2015)). In South Korea, NMB showed -5.4% and 2.8% for all days, but -15.2% and -11.2% for days below $40{\mu}g/m^3$ to minimize the impacts of long-range transport under E2010 and E2015, respectively. For all days, simulated $PM_{2.5}$ concentrations were overestimated in Seoul, Incheon, Southern part of Gyeonggi and Daejeon, and underestimated in other regions such as Jeonbuk, Ulsan, Busan and Gyeongnam, regardless of what emission inventories were applied. Our results suggest that the updated emission inventory, which reflects current status of emission amounts and spatio-temporal allocations, is needed for improving the performance of air quality forecasting.