• Title/Summary/Keyword: air monitoring

Search Result 1,514, Processing Time 0.036 seconds

Study on the indoor exposure factors of phthalates using bio-monitoring data (생체시료를 이용한 프탈레이트의 실내 노출인자 연구)

  • Yang, Ji Yeon;Shin, Dong Chun;Lee, Si Eun;Lee, Geon Woo;Kim, Joon Hyeog;Lee, Yong Jin;Lim, Young Wook
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.315-321
    • /
    • 2018
  • Phthalate is an endocrine disruptor that interferes with homeostasis and developmental regulation. It is highly toxic to the environment and is associated with various diseases of the human body. Using biological samples from 140 adult subjects, to evaluate the influencing factors which are related to contaminant concentration levels, we used correlation analysis and multiple regression analysis. Lastly, in order to analyze the health effects related to exposure to phthalates, we conducted a risk assessment by estimating acceptable daily intake exposure according to the influential factors. When we compared the concentration level according to influential factors, in general, the subjects who had engaged in home remodeling work had higher urinary phthalate metabolite concentrations levels than the subjects who had not engaged in home remodeling work. We can confirm statistically significant differences in DBP metabolites. In addition, we can confirm the concentration appeared higher in the categories such as using air freshener, sofa and foods. Through conducting a risk assessment of DEHP, BBzP, DiBP, and DnBP by using data on phthalate metabolite concentration in urine, it was found that the average concentration of all metabolites did not exceed TDI.

Elasticity Analyses between Water Temperature and Water Quality considering Climate Change in Nak-dong River Basin (기후변화를 고려한 낙동강 유역의 수온과 수질 탄성도 분석)

  • Shon, Tae Seok;Lee, Kyu Yeol;Im, Tae Hyo;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.830-840
    • /
    • 2011
  • Climate change has been settled as pending issues to consider water resources and environment all over the world, however, scientific and quantitative assessment methods of climate change have never been standardized. When South Korea headed toward water deficiency nation, the study is not only required analysis of atmospheric or hydrologic factors, but also demanded analysis of correlation with water quality environment factors to gain management policies about climate change. Therefore, this study explored appropriate monthly rainfall elasticity in chosen 41 unit watersheds in Nak-dong river which is the biggest river in Korea and applied monitored discharge data in 2004 to 2009 with monthly rainfall using Thiessen method. Each unit watershed drew elasticity between water temperature and water quality factors such as BOD, COD, SS, T-N, and T-P. Moreover, this study performed non-linear correlation analysis with monitored discharge data. Based on results of analysis, this is first steps of climate change analysis using long-term monitoring to develop basic data by Nak-dong river Environmental Research Center (Ministry of Environment) and to draw quantitative results for reliable forecasting. Secondary, the results considered characteristic of air temperature and rainfall in each unit watershed so that the study has significance its various statistical applications. Finally, this study stands for developing comparable data through "The 4 major river restoration" project by Korea government before and after which cause water quality and water environment changes.

Spectogram analysis of active power of appliances and LSTM-based Energy Disaggregation (다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘)

  • Kim, Imgyu;Kim, Hyuncheol;Kim, Seung Yun;Shin, Sangyong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.21-28
    • /
    • 2021
  • In this study, we propose a deep learning-based NILM technique using actual measured power data for 5 kinds of home appliances and verify its effectiveness. For about 3 weeks, the active power of the central power measuring device and five kinds of home appliances (refrigerator, induction, TV, washing machine, air cleaner) was individually measured. The preprocessing method of the measured data was introduced, and characteristics of each household appliance were analyzed through spectogram analysis. The characteristics of each household appliance are organized into a learning data set. All the power data measured by the central power measuring device and 5 kinds of home appliances were time-series mapping, and training was performed using a LSTM neural network, which is excellent for time series data prediction. An algorithm that can disaggregate five types of energies using only the power data of the main central power measuring device is proposed.

Low-cost Fiber Bragg Grating Interrogator Design for Unmanned Aircraft (무인 항공기를 위한 저가형 FBG 인터로게이터 설계)

  • Hong, Jae-Beom;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Complex materials are widely used in aviation industries where lightweighting is essential because they have lighter properties than metals. However, composite materials can cause defects such as internal void formation, poor adhesive mixing, and non-adhesive parts during the production process, and there is a risk of micro-cracking and interlayer separation due to low energy impact. Therefore, a structural damage test is essential. As a result, structural integrity monitoring using FBG is drawing attention. Compared to conventional electrical sensors, FBG has the advantage of being more corrosion-resistant and multiplexed without being affected by electrical noise. However, interloggers measuring FBG are expensive and have a large disadvantage because they are made on the premise of measuring large structures. In this paper, low-cost interloggers were designed for use in unmanned or small aircraft using optical switche, WDM filter, and LTFs, and compared to conventional high-priced interrogator.

Behaviour of Vegetation Health as a Response to Climate and Soil Dynamics between 2000 and 2015 in Different Ecological Zones of Rivers State, Nigeria

  • Eludoyin, Olatunde Sunday;Aladesoun, Olawale Oluwamuyiwa
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.280-291
    • /
    • 2021
  • The study examined the influence of climate and soil dynamics on vegetation health across the ecological zones in Rivers State, Nigeria. MODIS imagery was used to assess the vegetation health through NDVI and point grid pattern of meteorological data for total precipitation (TP), air temperature (AT), soil moisture (SM) and soil temperature (ST) of 2000, 2003, 2006, 2009, 2012 and 2015 were used for the study. Descriptive and inferential statistics were used for data analysis. Findings showed that NDVI ranged between 0.420 and 0.612 in the freshwater swamp (FWS) while between 0.465 and 0.611 in the rainforest and the NDVI in the mangrove was generally low. The highest mean AT was experienced in the mangrove ecological zone and the least was experienced in the rainforest. The mean SM was generally highest in the rainforest with highest value in 2000 (774.44 m3/m3). The ST was highest in the mangrove and the least was experienced in the rainforest while the TP was highest in the mangrove. NDVI correlated significantly with SM (r=0.720; p<0.05) and ST (r= -0.493; p<0.05). NDVI, SM, TP and ST significantly varied among the ecological zones. Regression analysis showed that vegetation health was significantly related to the combination of soil temperature and soil moisture (R2=0.641; p=0.000). Thus, monitoring the factors that affect vegetation health in a changing climate and soil environments is highly required.

The Digital Redundancy Design for Back-up Mode Operation of Aviation Intercom (항공용 인터콤의 백업 모드 운용을 위한 디지털 방식의 이중화 설계)

  • Jeong, Seong-jae;Cho, Kyung-hak;Kim, Dong-hyouk;Lee, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.358-364
    • /
    • 2022
  • The Inter Communication System for avionics is in charge of processing all voice signals that internal calls between Pilot and Co-pilot, internal calls between Pilots and Crews, external calls through communication equipment such as Ultra/Very High Frequency Receiver/Transmitter(U/VHF RT), audio signal monitoring for navigation and mission equipment such as VHF Omnidirectional Range/Instrument Landing System(VOR/ILS), Tactical Air Navigation(TACAN), audio signal output for voice recording to Flight Data Recorder(FDR) and Data Transfer System(DTS), and warning/caution audio signal generate about the status and threat of aircraft. Because Inter Communication System for avionics is sensitive to noise in the case of analog audio signals, a redundant design that can protect audio signal from electromagnetic noise inside/outside of aircraft is required for the mission of pilots and crews. In this paper, Normal/Back-up operation mode and redundancy design plan based on digital method for the redundancy of the digital Inter Communication System for avionics and manufacturing, verification results are described.

Real-time TVOC Monitoring System and Measurement Analysis in Workplaces of Root Industry (뿌리산업 작업장내 총휘발성유기화합물류(TVOC) 실시간 노출감시체계 구축과 농도 분석)

  • Jong-Hyeok, Park;Beom-Su, Kim;Ji-Wook, Kang;Soo-Hee, Han;Kyung-Jun, Kim
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.425-434
    • /
    • 2022
  • Objectives: This study analyzes TVOC concentrations in root industry workplaces in order to prevent probable occupational disease among workers. Root industry includes all the infrastructure of manufacturing, such as casting and molding. Methods: Real-time TVOC sensors were deployed in three root industry workplaces. We measured TVOC concentrations with these sensors and analyzed the results using a data-analysis tool developed with Python 3.9. Results: During the study period, the mean of the TVOC concentrations remained in an acceptable range, 0.30, 2.15, and 1.63 ppm across three workplaces. However, TVOC concentrations increased significantly at specific times, with respective maximum values of 4.98, 28.35, and 26.65 ppm for the three workplaces. Moreover, the analysis of hourly TVOC concentrations showed that during working hours or night shifts TVOC concentrations increased significantly to higher than twice the daily mean values. These results were scrutinized through classical decomposition results and autocorrelation indices, where seasonal graphs of the corresponding classical decomposition results showed that TVOC concentrations increased at a specific time. Trend graphs showed that TVOC concentrations vary by day. Conclusions: Deploying a real-time TVOC sensor should be considered to reflect irregularly high TVOC concentrations in workplaces in the root industry. It is expected that the real-time TVOC sensor with the presented data analysis methodology can eradicate probable occupational diseases caused by detrimental gases.

Environment and Development of the Weather Monitoring Application in Kosovo

  • Shabani, Milazim;Baftiu, Naim;Baftiu, Egzon;Maloku, Betim
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.371-379
    • /
    • 2022
  • The environment in Kosovo is a topic of concern for the citizens and the state because of the temperatures that affect the health of the citizens and the climate around the world. Kosovo's climate is related to its geographical position. Stretching in the middle latitude, Kosovo's climate depends on the amount of heat coming from the Sun, the proximity of the Adriatic Sea, the Vardar valley, the openness to the north. In order to better understand the climatic features of Kosovo, one must know the elements of the climate such as: sunshine, temperature, precipitation, atmospheric pressure, winds. The Meteorological Institute of Kosovo is responsible for measuring temperatures in Kosovo since 2014 and until now 12 meteorological stations have been operationalized with automatic measurement and real-time data transfer to the central system for data collection and archiving. The hydrometeorological institute lacks an application for measuring temperatures in all the countries of Kosovo. Software applications are generally built to suit the requirements of different governments and clients in order to enable easier management of the jobs they operate on. One of the forms of application development is the development of mobile applications based on android. The purpose of the work is to create a mobile application based on the Android operating system that aims to display information about the weather, this type of application is necessary and important for users who want to see the temperature in different places in Kosovo, but also the world. This type of application offers many options such as maximum temperature, minimum temperature, humidity, and air pressure. The built application will have real and accurate data; this will be done by comparing the results with other similar applications. Such an application is necessary for everyone, especially for those people whose daily work is dependent on the weather or even for those who decide to spend their vacations, such as summer or winter. In this paper, comparisons are also made within android applications for tablets, televisions and smart watches.

Turbulent-image Restoration Based on a Compound Multibranch Feature Fusion Network

  • Banglian Xu;Yao Fang;Leihong Zhang;Dawei Zhang;Lulu Zheng
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.237-247
    • /
    • 2023
  • In middle- and long-distance imaging systems, due to the atmospheric turbulence caused by temperature, wind speed, humidity, and so on, light waves propagating in the air are distorted, resulting in image-quality degradation such as geometric deformation and fuzziness. In remote sensing, astronomical observation, and traffic monitoring, image information loss due to degradation causes huge losses, so effective restoration of degraded images is very important. To restore images degraded by atmospheric turbulence, an image-restoration method based on improved compound multibranch feature fusion (CMFNetPro) was proposed. Based on the CMFNet network, an efficient channel-attention mechanism was used to replace the channel-attention mechanism to improve image quality and network efficiency. In the experiment, two-dimensional random distortion vector fields were used to construct two turbulent datasets with different degrees of distortion, based on the Google Landmarks Dataset v2 dataset. The experimental results showed that compared to the CMFNet, DeblurGAN-v2, and MIMO-UNet models, the proposed CMFNetPro network achieves better performance in both quality and training cost of turbulent-image restoration. In the mixed training, CMFNetPro was 1.2391 dB (weak turbulence), 0.8602 dB (strong turbulence) respectively higher in terms of peak signal-to-noise ratio and 0.0015 (weak turbulence), 0.0136 (strong turbulence) respectively higher in terms of structure similarity compared to CMFNet. CMFNetPro was 14.4 hours faster compared to the CMFNet. This provides a feasible scheme for turbulent-image restoration based on deep learning.

Case Study on the Time Zero (T0) of Event Data Recorder (사고기록장치의 기록 시점에 대한 사례연구)

  • Jongjin Park;Jeongman Park;Jungwoo Park;Byungdeok In
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.35-41
    • /
    • 2023
  • On December 19, 2015, as Article 29-3 (Installation of Accident Recording Devices and Provision of Information) of Motor Vehicle Management Act came into force, In Korea, the EDR (Event Data Recorder) reports are often used for the analysis of various traffic accident cases such as multiple collisions, traffic insurance crimes, and sudden unintended acceleration (SUA), and the others. So many investigators have analyzed the driver's behavior and vehicle situation by comparing the time zero in the EDR report to the actual crash time in dash-cam (or CCTV). Time zero (T0) is defined as the reference time for the record interval or time interval when recording an accident in Article 56-2, Enforcement rule of Performance and Standard for Automobile and Automotive parts. Also in the EDR report, time zero (T0) is defined as whichever of the following occurs first; 1. "wake-up" by an air-bag control system, 2. Continuously running algorithms (by monitoring of longitudinal or lateral delta-V), 3. Deployment of a non-reversible deployment restraint. We have already proposed the "Flowchart & Checklist" to adopt the EDR report for traffic accident investigation and the necessity of specialized institutions or courses to systematically educate or analyze the EDR data. Therefore, in this paper, we report to traffic accident investigators notable points and analysis methods based on some real-world traffic accidents that can be misjudged in specifying time zero (T0).