• 제목/요약/키워드: air injection

검색결과 1,202건 처리시간 0.024초

EMISSION CHARACTERISTICS IN ULTRA LOW SULFUR DIESEL

  • Oh, S.-K.;Baik, D.-S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • 제4권2호
    • /
    • pp.95-100
    • /
    • 2003
  • Automobile industry has been developed rapidly as a key manufacturing industry in Korea. Meanwhile, air pollution is getting worse noticeably than ever. In the diesel emission, PM (Particulate Matter) and NOx (Nitrogen Oxides) have been exhausted with a great amount and the corresponding emission regulations are getting stringent. In order to develop low emission engines, it is necessary to research on better qualified fuels. Sulfur contained in fuel is transformed to sulfur compound by DOC (Diesel Oxidation Catalyst) and then it causes to the increase of sulfate-laden PM on the surface of catalyst. In this research, ULSD (Ultra Low Sulfur Diesel) is used as a fuel and some experimental results are investigated. ULSD can reduce not only PM but also gas materials because cetane value, flash point, distillation 90%, pour point and viscosity are improved in the process of desulfurization. However, excessively reduced sulfur may cause to decease lubricity of fuel and engine performance in fuel injection system. Therefore, it requires only modest adjusted amount of sulfur can improve engine performance and DOC, as well as decrease of emission.

Cold EGR 장착 디젤엔진에서의 NOx 저감에 관한 실험적 연구 (An Experimental Study on NOX Reduction in a Diesel Engine with Cold EGR)

  • 부펜더;나빈쿠마르;전용두
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 춘계학술발표논문집 2부
    • /
    • pp.769-772
    • /
    • 2010
  • The objective of the current research work is to investigate the usage of biodiesel combined with the use of EGR in order to reduce the emission of all regulated pollutants from diesel engines. A single cylinder, air cooled, constant speed direct injection diesel engine was used for the experimental work and a cold EGR system was developed and fitted to the engine. Concentrations of HCs, NOx, and CO from the exhaust gas along with the smoke opacity were measured. Engine performance parameters such as the brake thermal efficiency (BTE) and the brake specific energy consumption (BSEC) were also calculated from the measured data. The results from the present investigation suggest that 25-30% EGR rate could give excellent NOx reduction without any significance penalty on smoke opacity or BSEC under the engine load of up to 40%. Under the full load condition, 15% EGR rate was found to be an option while higher EGR rate resulted in inferior performance and heavy smoke.

  • PDF

HSDI 디젤 엔진 연비 저감 개발에 대한 연구 (Study of HSDI Diesel Engine Development for Low Fuel Consumption)

  • 전제록;유준;윤금중
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.138-143
    • /
    • 2006
  • Modification of injector, oil ring tension reduction and oil pump rotor re-matching with optimization of relevant engine control parameters could drive fuel consumption reduction of HSDI diesel engine. A 5 holes injector was replaced with a 6 holes with smaller nozzle hole diameter and 1.5 k factor, and evaluated in a view of fuel economy and emission trade-offs. With introducing smaller nozzle hole diameter injector, PM(Particulate Matter) was drastically decreased for low engine load and low engine rpm. Modification of oil pump and oil ring was to reduce mechanical friction and be proved to better fuel economy. Optimization of engine operating conditions was a great help for the low fuel consumption. Influence of the engine operating parameters· including pilot quantity, pilot interval, air mass and main injection timing on fuel economy, smoke and NOx has been evaluated with 14 points extracted from NEDC(New European Driving Cycle) cycle. The fuel consumption was proved to $7\%$ improvement on an engine bench and $3.7\%$ with a vehicle.

COMBINED EFFECTS OF BD20, LOW SULFUR DIESEL FUEL AND DIESEL OXIDATION CATALYST IN A HD DIESEL ENGINE

  • Baik, D.S.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.653-658
    • /
    • 2006
  • The enormous increase in the use of fossil energy sources throughout the world has caused severe air pollution and a depletion of energy. Besides, it seems very difficult to comply with the upcoming stringent emission standards in vehicles. In order to develop low emission engines, research on better qualified fuels as alternative fuels to secure high engine performance becomes a more important issue than ever. Since sulfur contained in diesel fuel is transformed in sulfate-laden particulate matters when a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. But the excessive reduction of sulfur levels may cause the lubricity of fuel and engine performance to degrade. In this aspect, biodiesel fuel derived from rice bran is applied to compensate viscosity lost in the desulfurization treatment. This research is focused on the performance of an 11,000cc diesel engine and the emission characteristics by the introduction of ULSD(Ultra Low Sulfur Diesel), BD20(Diesel 80%+Biodiesel 20%) and a diesel oxidation catalyst, where BD20 is used to improve the lubricity of fuel in fuel injection systems as fuel additives or alternative fuels.

비빔완료 후 즉시 혼입한 ERCO에 AE제 사전혼입량 변화에 따른 보통강도 콘크리트의 기초적 특성 (Fundamental characteristics of Normal Strength Concrete According to the Changes of AE Agent Pre-addition Volume to ERCO of Mixed after completion)

  • 김태우;이혁주;김종;전충근;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.206-207
    • /
    • 2018
  • This study is a series of studies intended to derive the improvement of strength concrete quality using an emulsified refined oil (ERCO). In other words, ERCO is used to analyze the improvement degree of the basic properties of ordinary strength concrete by pre-adding the AE Agent on its products. ERCO was also planned to have a mixing ratio of 0, 0.5 %, and the pre-addtion of AE agent mixed with 0, 1, 2, and 3 % of the concrete's mixed ERCO mass. As a result, as the pre-injection of AE agent was increased, the slump, and air contents tended to be improved microscopically, but there was no significant effect. and Compressive strength tends to increase smart-all as the pre-addtion of AE agent increases in concrete, but it does not have a significant effect.

  • PDF

초고압수를 이용한 노면표시 자동제거 장비개발을 위한 제어시스템 및 노면최적조건에 대한 연구 (DEVELOPMENT OF A CONTROL SYSTEM FOR AN AUTOMATIC ROAD SIGN REMOVING EQUIPMENT USING HIGH PRESSURE WATER-JET)

  • 권순욱;김균태;한재구
    • 한국건설관리학회논문집
    • /
    • 제5권4호
    • /
    • pp.139-146
    • /
    • 2004
  • Resent removal work for road signs has been labor intensive and required times since it has been done manually using shaving type equipment. While traditional process is conducting, there are traffic jams caused by the passing control, and happened unexpected accidents to workers working at dangerous road circumstance. Besides, in current shaving method, there are high potentialities on the air pollution as well as the explosive accident occurred by using a propane gas. So, as an alternative, we have studied to develop the automatic erasing equipment made up with a high pressure water-jet system and automatic control system, mobile system; Wate-rjet system consists of an intensifier and nozzles to give a high pressure and spray on the sign, and automatic control system is composed of one axis robot using a hydraulic servo actuator controlled by a lever, And as a mobile system, a truck plays an important role for the transport of equipment and the forward movement in a removal process. In this paper, we have analyzed the characteristics of road signs and have investigated current erasing methods in the field. And we have organized and designed automatic erasing equipment, and we have made a basic experiment to find out the optimal spray condition as like the spray distance, spray angle and injection pressure.

승용 및 하이브리드 자동차 온실가스 배출특성 연구 (A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles)

  • 임윤성;문선희;정택호;이종태;동종인
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

분무충돌을 이용한 w-형 직접분사식 디젤연소실에 대한 계산적 고찰 (Simulative consideration for w-shaped d.i. diesel combustion chamber system using spray wall impaction)

  • 박권하
    • 한국분무공학회지
    • /
    • 제2권2호
    • /
    • pp.8-15
    • /
    • 1997
  • Combustion chamber systems using spray impinged on walls have been studied for improving combustion characteristics in high speed direct injection diesel engines. The fuel spray injected in a small combustion chamber may be easily impinged and deposited on the wall. The fuel deposit has been considered as the cause for unburned emission due to difficulty of fuel-air mixing. In this paper w-shaped combustion chamber which has four raised pips on the side wall is introduced and discussed by comparing with conventional chamber with no pips. The computer code employing new spray-wall interaction model in general non-orthogonal grids is used in here. The model is applied into the new chamber shape with raised pips. In this chamber system four-hole nozzle is used, and the sprays injected from the each hole impact on lands raised from the chamber wall surface. After impacting, the sprays break up into much smaller drops and distribute over all the chamber space, instead of distributing just near the wall surface in conventional omega-shape. The results showed the potential of the w-shaped chamber employing pips for dispersing droplets so as tn avoid the fuel deposit regions.

  • PDF

CAE를 이용한 자동차용 부품(Gear Box)의 주조방안 설계에 대한 사례연구 (Case Study for Casting Design of Automobile Part(Gear Box) Using CAE)

  • 권홍규;장무경
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.179-185
    • /
    • 2012
  • When manufacturing die casting mold, generally, the casting layout design should be considered based on the relation among injection system, casting condition, gate system, and cooling system. Also, the extent or the location of product defects was differentiated according to the various relations of the above conditions. In this research, in order to optimize casting design of an automobile part (Gear Box) Computer Aided Engineering (CAE) was performed by using the simulation software (Z Cast). The simulation results were analyzed and compared with experimental results. During the mold filling, internal porosities caused by air entrap were predicted and reduced remarkably by the modification of the gate system and the configuration of overflow. With the solidification analysis, internal porosities caused by the solidification shrinkage were predicted and reduced by the modification of the gate system. For making a better production die casting tool, cooling systems on several thick areas are proposed in order to reduce internal porosities caused by the solidification shrinkage.

경유 화염에서 왕겨를 이용한 바이오매스 재연소의 NOx 저감 효과 (The Effect of Biomass Reburning with Rice Husk on NOx Reduction in Light Oil Flame)

  • 김세원;신명철;이창엽
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.17-24
    • /
    • 2009
  • Reburning is one of the most useful technologies for reducing nitric oxide in economically and technically. The reburning process was demonstrated as an effective NOx reduction method through injection of a secondary hydrocarbon fuel. An experimental study has been conducted to evaluate the effect of biomass reburning on NOx and CO formation in a light oil flamed combustion furnace. Reburning tests on NOx reduction of air-carried rice husk powder as the reburn fuel and light oil as the main fuel were performed in flames stabilized by a co-flow swirl and fuel staged burner, which was mounted at the front of the furnace. The results included flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. It was observed clearly that NOx concentrations in the exhaust have considerably decreased due to effect of biomass reburning. The maximum NOx reduction rate was 42% when the reburn fuel fraction was 0.18. The CO emissions were kept under 42 ppmv in all experimental tests. And this paper makes clear that in order to decrease NOx concentration in the exhaust when the biomass reburning system is adapted, the control of some factors such as reburn fuel fraction and reburn zone fraction is very important.

  • PDF