• Title/Summary/Keyword: air hybrid engine

Search Result 38, Processing Time 0.025 seconds

Experimental Study on the Performance Characteristics of Air Hybrid Engine (Air hybrid 엔진의 구동 특성에 관한 실험적 연구)

  • Lee, Yong-Gyu;Kim, Yong-Rae;Kim, Young-Min;Park, Chul-Woong;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.50-56
    • /
    • 2011
  • A preliminary experimental study of new concept air hybrid engine, which stores compressed air in the tank during braking and re-use it to propel vehicle during crusing or acceleration, was carried out in this study. A single cylinder engine was modified to realize the concept of air hybrid engine. Independent variable valve lift system was adopted in one of the exhaust valves to store the compressed air into the air tank during compression period. An air injector module was installed in the place of spark plug, and the stored compressed air was supplied during the expansion period to realize air motoring mode. For air compression mode, the tank with volume of 30 liter could be charged up to more than 13 bar. By utilizing this stored compressed air, motoring work of 0.41 bar of IMEP(Indicated mean effective pressure) at maximum can be generated at the 800rpm conditions, which is higher than the case of normal idle condition by 1.1 bar of IMEP.

Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition (Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어)

  • Kwon, Min-Su;Lee, Min-Kwang;Kim, Jun-Soo;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.

Development of Hybrid Electric Compressor Motor Drive System for Hybrid Electrical Vehicles

  • Jung, Tae-Uk
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.960-968
    • /
    • 2009
  • This paper presents a design optimization process for interior permanent magnet synchronous motors (IPMSM) for hybrid electric compressors (HEC) which are applied to hybrid electrical vehicles. A hybrid electric compressor is composed of an electric motor driving section and an engine driving section which is connected to the engine by a pulley belt. A hybrid electric compressor driving motor requires half of the full driving power of a compressor. Even though an engine is not operated at the idling stop mode, the electric motor drives the air-conditioner compressor by itself so that the air conditioning system can produce its minimum cooling capacity. In this paper, the design optimization of an IPMSM for a 42 (V) applied voltage system is studied using the design of experiment (DOE) and response surface method (RSM) of 6sigma. The driving characteristics of this motor drive system are measured and analyzed by experiment.

A Theoretical Study on Driving Distance of Compressed Air Vehicle Using Scroll Expander (스크롤 팽창기를 적용한 압축공기 엔진 자동차의 주행거리 특성에 관한 연구)

  • Shin, Donggil
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.170-175
    • /
    • 2016
  • An internal combustion engine is the most widely used power source for an automobile. In order to resolve environmental problems resulting from the use of internal combustion engines, environmentally friendly automobiles such as hybrid, electric, and air-engine vehicles are being developed. The share of hybrid vehicles using battery or pure electric vehicles, which are not popular, is gradually increasing. Compared to an electric vehicle, which uses an electric motor, air-engine vehicles, which use compressed air, have hardly been developed. In this study, a compressed air engine with a scroll expander is introduced, and the potential mileage of an automobile utilizing this engine is theoretically calculated.

A study on engine performance of EGR valve problem in Hybrid vehicles (하이브리드 자동차의 EGR 밸브 오작동 시 엔진 성능에 미치는 영향)

  • Song, Rak Hyun;cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, Air pollution is gradually increasing which are coming from the exhaust of the ICE vehicles in the world. ICE vehicle exhaust gas and $CO_2$ are widely suspected of contributing to the called greenhouse effect, fueling fears of global warming. Therefore, many countries are striving to decrease the vehicle exhaust gas and have developed a variety of policies as air pollution regulation plans. To comply with the regulations, automotive industry has developed hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid car is eco-friendly and has lowered exhausting gases and improved fuel efficiency. This research has been written to show that break down cases with EGR valve in hybrid cars, steadily increasing in use, and to help with on-site maintenance.

The Effects of High Torque Starters on the Starting Characteristics of a Micro-hybrid Engine (고토크 스타터에 의한 마이크로 하이브리드 엔진의 시동특성 개선 효과)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.12-15
    • /
    • 2010
  • It is requested to shorten the starting duration for idle stop function equipped cars without harmful effects on the environment. Higher cranking speeds can be achieved with high torque starter. The object of this study is to develope the high torque starter and evaluate its effect on the exhaust emissions. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Engine out emissions such as HC, CO, $CO_2$, and the excess air ratios, lambda were measured using MEXA-554JK. The result showed that a high torque starter, HTS-II shortened the starting duration and reduced engine out emissions of HC, CO and improved starting performance with larger excess air ratio than that of the original starter, Org. S and a high torque starter, HTS-I.

A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles (승용 및 하이브리드 자동차 온실가스 배출특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Chung, Taek Ho;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

Modeling of Engine Coolant Temperature in Diesel Engines for the Series Hybrid Powertrain System (직렬형 하이브리드 추진시스템의 디젤 엔진 냉각수온 모델링)

  • Kim, Yongrae;Lee, Yonggyu;Jeong, Soonkyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.53-58
    • /
    • 2016
  • Modeling of engine coolant temperature was conducted for a series hybrid powertrain system. The purpose of this modeling was a simplification of complex heat transfer process inside a engine cooling system in order to apply it to the vehicle powertrain simulation software. A basic modeling concept is based on the energy conservation equation within engine coolant circuit and are composed of heat rejection from engine to coolant, convection heat transfer from an engine surface and a radiator to ambient air. At the final stage, the coolant temperature was summarized as a simple differential equation. Unknown heat transfer coefficients and heat rejection term were defined by theoretical and experimental methods. The calculation result from this modeling showed a reasonable prediction by comparison with the experimental data.

Development of High Efficiency and Low Pollutant Cogeneration Hybrid System (고효율 저공해 열병합발전 하이브리드 시스템 개발)

  • Choi, Jae-Joon;Kim, Hyouck-Ju;Chung, Dae-Hun;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1031-1035
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system is consist of Lean burn gas engine, afterburner, boiler, economizer, DeNOx catalyst, combustion catalyst, absorption chiller, cooling tower and grid connection system. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10ppm NOx, 50ppm CO, 25ppm UHC. The cogeneration hybrid system can meet the NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle (하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구)

  • Park, Cheol-Woong;Choi, Young;Kim, Chang-Gi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.2
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.