• 제목/요약/키워드: air hybrid engine

검색결과 38건 처리시간 0.034초

Air hybrid 엔진의 구동 특성에 관한 실험적 연구 (Experimental Study on the Performance Characteristics of Air Hybrid Engine)

  • 이용규;김용래;김영민;박철웅;최교남;정동수
    • 한국가스학회지
    • /
    • 제15권5호
    • /
    • pp.50-56
    • /
    • 2011
  • 엔진의 제동시의 유효일을 이용하여 고압의 압축 공기를 저장하고 운전 시에는 저장된 압축 공기를 동력원으로 사용하는 신개념의 Air hybrid 엔진의 구현 가능성 검토를 위한 실험적인 연구를 진행하였다. Air hybrid 엔진 시스템의 구현을 위하여 연구용 단기통엔진을 개조하였고, 배기 밸브 중의 하나에 독립 가변 밸브리프트 시스템을 장착하여 압축 행정 동안에 고압의 공기를 저장할 수 있도록 하였다. 또한, 엔진의 구동을 위하여 점화플러그 위치에 공기 분사 모듈을 장착하여 팽창행정 중에 고압의 공기를 분사할 수 있도록 하였다. 압축 공기 저장 모드에서는 800rpm 아이들 조건에서 800 사이클 동안 30리터의 공기 저장 탱크를 최대 13 bar 까지 충전할 수 있었고, 충전된 고압의 공기를 이용하여 800rpm 아이들 조건에서 0.41 bar의 평균도시유효압력의 일을 얻을 수 있었는데 이것은 정상적인 아이들 조건보다 1.1 bar의 유효일이 증가한 것이다.

Cylinder Deactivation 엔진의 동작모드 전환 시 과도상태 공연비 제어 (Transient Air-fuel Ratio Control of the Cylinder Deactivation Engine during Mode Transition)

  • 권민수;이민광;김준수;선우명호
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.26-34
    • /
    • 2011
  • Hybrid powertrain systems have been developed to improve the fuel efficiency of internal combustion engines. In the case of a parallel hybrid powertrain system, an engine and a motor are directly coupled. Because of the hardware configuration of the parallel hybrid system, friction and the pumping losses of internal combustion engines always exists. Such losses are the primary factors that result in the deterioration of fuel efficiency in the parallel-type hybrid powertrain system. In particular, the engine operates as a power consumption device during the fuel-cut condition. In order to improve the fuel efficiency for the parallel-type hybrid system, cylinder deactivation (CDA) technology was developed. Cylinder deactivation technology can improve fuel efficiency by reducing pumping losses during the fuel-cut driving condition. In a CDA engine, there are two operating modes: a CDA mode and an SI mode according to the vehicle operating condition. However, during the mode change from CDA to SI, a serious fluctuation of the air-fuel ratio can occur without adequate control. In this study, an air-fuel ratio control algorithm during the mode transition from CDA to SI was proposed. The control algorithm was developed based on the mean value CDA engine model. Finally, the performance of the control algorithm was validated by various engine experiments.

Development of Hybrid Electric Compressor Motor Drive System for Hybrid Electrical Vehicles

  • Jung, Tae-Uk
    • Journal of Power Electronics
    • /
    • 제9권6호
    • /
    • pp.960-968
    • /
    • 2009
  • This paper presents a design optimization process for interior permanent magnet synchronous motors (IPMSM) for hybrid electric compressors (HEC) which are applied to hybrid electrical vehicles. A hybrid electric compressor is composed of an electric motor driving section and an engine driving section which is connected to the engine by a pulley belt. A hybrid electric compressor driving motor requires half of the full driving power of a compressor. Even though an engine is not operated at the idling stop mode, the electric motor drives the air-conditioner compressor by itself so that the air conditioning system can produce its minimum cooling capacity. In this paper, the design optimization of an IPMSM for a 42 (V) applied voltage system is studied using the design of experiment (DOE) and response surface method (RSM) of 6sigma. The driving characteristics of this motor drive system are measured and analyzed by experiment.

스크롤 팽창기를 적용한 압축공기 엔진 자동차의 주행거리 특성에 관한 연구 (A Theoretical Study on Driving Distance of Compressed Air Vehicle Using Scroll Expander)

  • 신동길
    • 에너지공학
    • /
    • 제25권4호
    • /
    • pp.170-175
    • /
    • 2016
  • 현재 자동차의 주요 동력원은 내연기관이 가장 많은 비중을 차지하고 있다. 내연기관 자동차로 인한 환경문제를 해결하기 위한 친환경 자동차로는 하이브리드 자동차, 전기 자동차 및 공기 엔진 자동차 등을 들 수 있다. 배터리를 이용하는 하이브리드 차나 순수 전기차 등도 아직은 크지 않으나 점차 많은 비중을 차지하여 나가고 있다. 전기모터를 사용하는 전기차에 비해 압축공기를 이용하는 공기 엔진 자동차는 아직은 연구개발이 거의 이루어지지 않은 상태이다. 본 논문에서는 스크롤 팽창기를 적용하는 새로운 압축공기 엔진을 소개하고, 이 엔진을 장착한 자동차의 주행거리 가능 거리를 이론적으로 산출하였다.

하이브리드 자동차의 EGR 밸브 오작동 시 엔진 성능에 미치는 영향 (A study on engine performance of EGR valve problem in Hybrid vehicles)

  • 송락현;조행묵
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, Air pollution is gradually increasing which are coming from the exhaust of the ICE vehicles in the world. ICE vehicle exhaust gas and $CO_2$ are widely suspected of contributing to the called greenhouse effect, fueling fears of global warming. Therefore, many countries are striving to decrease the vehicle exhaust gas and have developed a variety of policies as air pollution regulation plans. To comply with the regulations, automotive industry has developed hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid car is eco-friendly and has lowered exhausting gases and improved fuel efficiency. This research has been written to show that break down cases with EGR valve in hybrid cars, steadily increasing in use, and to help with on-site maintenance.

고토크 스타터에 의한 마이크로 하이브리드 엔진의 시동특성 개선 효과 (The Effects of High Torque Starters on the Starting Characteristics of a Micro-hybrid Engine)

  • 김성수
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.12-15
    • /
    • 2010
  • It is requested to shorten the starting duration for idle stop function equipped cars without harmful effects on the environment. Higher cranking speeds can be achieved with high torque starter. The object of this study is to develope the high torque starter and evaluate its effect on the exhaust emissions. The test was conducted on a 1.5 L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Engine out emissions such as HC, CO, $CO_2$, and the excess air ratios, lambda were measured using MEXA-554JK. The result showed that a high torque starter, HTS-II shortened the starting duration and reduced engine out emissions of HC, CO and improved starting performance with larger excess air ratio than that of the original starter, Org. S and a high torque starter, HTS-I.

승용 및 하이브리드 자동차 온실가스 배출특성 연구 (A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles)

  • 임윤성;문선희;정택호;이종태;동종인
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

직렬형 하이브리드 추진시스템의 디젤 엔진 냉각수온 모델링 (Modeling of Engine Coolant Temperature in Diesel Engines for the Series Hybrid Powertrain System)

  • 김용래;이용규;정순규
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.53-58
    • /
    • 2016
  • Modeling of engine coolant temperature was conducted for a series hybrid powertrain system. The purpose of this modeling was a simplification of complex heat transfer process inside a engine cooling system in order to apply it to the vehicle powertrain simulation software. A basic modeling concept is based on the energy conservation equation within engine coolant circuit and are composed of heat rejection from engine to coolant, convection heat transfer from an engine surface and a radiator to ambient air. At the final stage, the coolant temperature was summarized as a simple differential equation. Unknown heat transfer coefficients and heat rejection term were defined by theoretical and experimental methods. The calculation result from this modeling showed a reasonable prediction by comparison with the experimental data.

고효율 저공해 열병합발전 하이브리드 시스템 개발 (Development of High Efficiency and Low Pollutant Cogeneration Hybrid System)

  • 최재준;김혁주;정대헌;박화춘
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1031-1035
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system is consist of Lean burn gas engine, afterburner, boiler, economizer, DeNOx catalyst, combustion catalyst, absorption chiller, cooling tower and grid connection system. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10ppm NOx, 50ppm CO, 25ppm UHC. The cogeneration hybrid system can meet the NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구 (Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle)

  • 박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.