• Title/Summary/Keyword: air flow resistance

Search Result 308, Processing Time 0.027 seconds

Effect of Partition within Opening on Helium-Air Exchange Flow (개구부에 삽입한 수직평판이 헬륨.공기치환류에 미치는 영향)

  • Tae-il Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.797-805
    • /
    • 2003
  • This paper describes experimental investigations of helium-air exchange flow through single opening and partitioned opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with a small opening on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Flow measurements are made with the opening, for partition ratios H_p/H$_1$$ in the range 0 to 1. where H_p$ and H$_1$ are partition length and height of the opening. respectively. In the case of H_p/H$_1$$ of 0, flow passages of upward flow of the helium and downward flow of the air within the opening are unseparated (bidirectional), and the two flows interfere within the opening. The unseparated flow increases strength of flow resistance and therefore, the exchange flow rate is minimum through range of the partition ratios. Two flow zones, i.e., separated (unidirectional) flow zone and unseparated (bidirectional) flow zone, exist with increasing the partition length. The exchange flow rate increases with increasing the separated flow zone. It is found that a maximum exchange flow rate exists at H_p/H$_1$$ of 1. As a result of comparison of the exchange flow rates by changing the partition ratio, the fluids Interference in the unseparated zone is found to be an important factor on the helium-air exchange flow rate.

A Study on the Two-Dimensional Phase Change Problem in a Rectangular Mold with Air-Gap Resistance to Heat Flow (공기층 저항을 고려한 사각형 주형내에서의 2차원 상변화문제에 관한 연구)

  • 여문수;손병진;김우승
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1205-1215
    • /
    • 1992
  • The solidification rate is of special importance in determining the casting structures and properties. The heat transfer characteristics at the interface between the mold and the casting is one of the major factors that control the solidification rate. The thermal resistance exists due to the air-gap formation at the mold/casting interface during the freezing process. In this study two-dimensional Stefan problem with air-gap resistance in the rectangular mold is considered and the heat transfer characteristics is numerically examined by using the enthalpy method. The effects of the major parameters, such as mold geometry, thermal conductivity, heat transfer coefficient, and initial temperature of casting, on the thermal characteristics are investigated.

Numerical Analysis of the Dynamical Characteristics of Fluid Flow Inside a Pipe with an Accumulator (축압기가 부착된 관로의 동특성 수치해석)

  • 서용권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.5
    • /
    • pp.388-397
    • /
    • 2001
  • This paper addresses characteristics of compressible flow dynamics inside a pipe with an accumulator and an inlet orifice. It also presents a simple but stable numerical method associated with the accumulator-orifice calculation. In particular, a focus is given to developing a method of finding an optimum design of the accumulator-orifice system (i.e., the accumulator size and the throttle resistance) that gives the most effective dissipation of the water-hammering problem. It is found that there exists indeed an optimum set of parameter values for the most effective dissipation of the wave energy.

  • PDF

Modeling of Turbulent Ventilation through an Opening due to Outdoor Pressure Fluctuations (개구부를 통한 외부압력 변동에 의한 난류환기 모델링)

  • Han, Hwa-Taik;Yom, Chol-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • This paper investigates the effects of outdoor pressure fluctuations on natural ventilation through an opening on a building envelope. The ventilation airflow rate depends on the magnitude and the period of the pressure fluctuations, the size of the opening relative to the space volume, and the resistance characteristics of the opening. Non-dimensional parameters have been derived, which determine indoor pressure responses due to outdoor pressure fluctuations. The flow regions are categorized into (1) synchronized region, (2) opening resistance region, and (3) transition region depending on the non-dimensional parameter derived. Pressure fluctuations and flow characteristics are investigated numerically using the 4th order Runge-Kutta method.

Depressurized Circulating Water Channel Design Using CFD (수치 해석을 이용한 감압 회류 수조 설계)

  • 부경태;조희상;신수철
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.22-29
    • /
    • 2003
  • New high-speed depressurized circulating water channel was designed by using the CFD code. Flow in the channel has free surface and pressure in the test section can be depressed. In this study, Flow separation and bubble occurrence were considered in designing the contraction nozzle shape for better flow uniformity Tn the test section. To supplement velocity defect due to the free surface, nozzle injection system more effective in high-speed flow was installed instead of drum system. Necessary power and injection techniques were proposed. And guide vane arrangement was analyzed to reduce the flow resistance and keep quiet free surface from ´surging´. Wave absorber was devised to reduce the wave resistance and to prevent the entrainment of air to the diffuser.

A Finite Element Modeling on the Fluid Flow and Solidification in a Continuous Casting Process (연속주조공정에서의 유동과 응고에 대한 유한요소 모델링)

  • Kim, Tae-Hun;Kim, Deok-Soo;Choi, Hyung-Chul;Kim, Woo-Seung;Lee, Se-Kyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.820-830
    • /
    • 1999
  • The coupled turbulent flow and solidification is considered in a typical slab continuous easting process using commercial program FIDAP. Standard $k-{\varepsilon}$ turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement.

AN EXPERIMENTAL STUDY ON AIR-WATER COUNTERCURRENT FLOW LIMITATION IN THE UPPER PLENUM WITH A MULTI-HOLE PLATE

  • NO HEE CHEON;LEE KYUNG-WON;SONG CHUL-HWA
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.557-564
    • /
    • 2005
  • Air-water countercurrent flow limitation at perforated plates with four holes was investigated in a vertical tank to see the effects of the plate thickness, the number of hole, and the diameter of the hole on the onset of CCFL. The thickness of plates was 1 cm and 4 cm, with a relatively large hole diameter of 5 cm. The collapsed water level formed on the perforated plate and its distribution in the upper plenum were measured. The gas flow rate in the multi-hole plate is relatively higher than one in the single tube because some of holes in the multi-hole plate provide a flow path fur liquid with less air-liquid resistance than in the single tube. The onset of CCFL occurred at nearly the same air flow rate regardless of the plate thickness. The negligible effect of the plate thickness on CCFL means that the flooding is initiated at the top of the plate rather than at its bottom. It turns out that $j_k$ and $K_k$ better fit the data than $H_k$ when hole diameter is greater than 2.86 cm. In our experimental ranges, the collapsed water levels at the onset of CCFL ranged from 7.5 cm to 10.5 cm. There was no three dimensional distribution of water level before and after the onset of CCFL.

A Numerical Analysis on Flow Fields and Calculation of Pressure Resistance about an Air Supported Ship (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.43-48
    • /
    • 1995
  • A numerical computation is carried out to analyse characteristics of flow fields around Air Supported Ships having arbitrary form. The computations are performed in a rectangular grid system with MAC(Marker And Cell) method. The governing equations are represented in a Finite Difference form by forward differencing in time and centered differencing in space except for convection terms. For validation of this numerical analysis method, the computation of flow fields around Catamaran and ACV(Air Cushion Vehicle) with pressure distribution on free surface are done, and that around Surface Effect Ship is also carried out. The results of the computations are compared with the those of existed numerical computation and experimental results with the same condition.

  • PDF

Convergence Study on Flow due to the Configuration of Bobsleigh (봅슬레이의 형상에 따른 유동에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.159-164
    • /
    • 2019
  • The front bumper of bobsleigh is mounted to alleviate the impact, but the air resistance to the bobsleigh depends on the body shape positioned in front. This study was conducted the flow analyses about three kinds of bobsleigh configurations. Models B and C with the sharp type of the front can reduce the air resistance than model A with the round type of the front. And the type that the back of the bumper narrows can generate a flow smoother than the one widening. It is thought that the results of this study can be devoted at ensuring the body design to reduce the flow resistance most at bobsleigh. As the design data with the durability of bobsleigh obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

Electricity generation from surface floating air cathode microbial fuel cell according to the wastewater flow-rate and the ratio of cathode surface area to anode surface area (표면부유 공기양극 미생물연료전지에서 유량 및 전극 면적비에 따른 전력생산 특성)

  • Yoo, Kyu-Seon;Song, Young-Chae;Woo, Jung-Hui;Chung, Jae-Woo;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.591-596
    • /
    • 2011
  • Surface floating air cathode microbial fuel cell (MFC) having horizontal flow was developed for the application of MFC technology. RVC (Reticulated vitreous carbon) coated with anyline was used as anode electrode and carbon cloth coated with Pt (5.0 g Pt/$m^2$, GDE LT250EW, E-TEK) was used as cathode electrode. As results of continuous operation with changing the flow rate from 4.3 mL/min to 9.5 mL/min, maximum power density of 4.5 W/$m^3$ was acquired at 5.4 mL/min, which was at 0.35 m/hr of flow velocity under anode electrode. When the ratio of cathode surface area to anode surface area($A_c/A_a$) was changed to 1.0, 0.5, and 0.25, the maximum power density of 2.7 W/$m^3$ was shown at the ratio of 1.0. As the ratio decreased from 1.0 to 0.25, the power density also decreased, which is caused by increasing the internal resistance resulted from reducing the surface area to contact with oxygen. Actually, internal resistances of the ratio of 1.0, 0.5, and 0.25 were 63.75${\Omega}$, 142.18${\Omega}$, and 206.12${\Omega}$, respectively.