• Title/Summary/Keyword: air flow pattern

Search Result 368, Processing Time 0.023 seconds

Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder (회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류)

  • Yu, Ju-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

A Study on Heat Transfer Characteristics in Flow Boiling of Pure Refrigerants and Their Mixtures in Horizontal Tube (수평 전열관내 유동비등하는 순수냉매와 혼합냉매의 열전달 특성에 관한 연구)

  • 임태우;한규일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.144-151
    • /
    • 2003
  • An experimental study was carried out in a uniformly heated horizontal tube to examine heat transfer characteristics of pure refrigerants, R134a and R123, and their mixtures during flow boiling. The flow pattern was also observed through tubular sight glasses with an internal diameter of 10 mm located at the inlet and outlet of the test section. Tests were run at a pressure of 0.6 MPa and in the heat flux ranges of 5~100 kW/$m^2$, vapor Quality 0~100 percent and mass velocity of 150-600 kg/$m^2$s. The observed flow patterns were compared to the flow pattern map of Kattan et al., which predicted well the present data over the entire range of mass velocity employed in this study. Heat transfer coefficients of the mixture were less than the interpolated values between pure fluids both in the low quality region where the nucleate boiling is dominant and in the high quality region where the convective evaporation is dominant.

The Effect of Surrounding Gas Flow on the Heat Transfer of the Falling Film Flowing Down the Outside of a Vertical Tube (수직원관 외부 유하액막 열전달에 주변 기체유동이 미치는 영향)

  • 권경민;정시영;김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.996-1003
    • /
    • 2002
  • Heat transfer characteristics were investigated for the falling film flowing down the outside of an electrically heated vertical tube. Water was used for the falling film, and its Reynolds number was varied in the range of 70~500. Because water is heated and evaporated as it flows down, both sensible and latent heat transfer should be considered. The effect of the surrounding air movement was investigated by changing the direction of the air injection; without air injection, parallel-flow, and counter-flow. For all cases, sensible teat transfer rate was almost linearly increased with the increasing film flow rate. It was found that the film heat transfer coefficient was hardly influenced by the parallel air flow. However, the counter-flow of air reduced the heat transfer coefficient, which might be caused by the uneven distribution or flooding of the film. At high heat flux, a sudden change of the film heat transfer coefficient was detected as the film flow rate reached the transition value. It is supposed that this phenomenon was caused by the change in the film flow pattern.

A study on Flow Characteristics of Gas Turbine Type Combustor (가스터어빈형 연속유연소기의 유동에 관한 연구(I) - 연소기의 설계 및 시작 -)

  • 이근오;김형섭
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.3
    • /
    • pp.37-43
    • /
    • 1987
  • The combustion process in gas turbine combustor mainly influenced by flow pattern in combustor, and especially the flow pattern near the nozzle and the shape of recirculation zone affect strongly on the flame stabilization, temperature distribution and combustion efficiency in combustor. In this paper, the author has designed and manufactured transparent simplified model combustors on the basis of K. Suzuki's combustor design method to investigate the effects of swirl number and secondary air hold arrays in axial position on the flow characteristics by adopting the tuft method and 5 hole pitot tube.

  • PDF

Distribution of Air-Water Two-Phase Flow in a Header of Aluminum Flat Tube Evaporator (알루미늄 평판관 증발기 헤더 내 공기-물 2상류 분지 실험)

  • Kim Nae-Hyun;Shin Tae-Ryong;Sim Yong-Sup
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2006
  • The air and water flow distribution are experimentally studied for a round header - flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is thirty. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.

Development of a Flow-duct for Uniform Flow of Chilly Air in a Refrigerator (냉장고의 균일 냉기유동을 위한 유동구조 개선에 관한 연구)

  • Yu, Jae-Hyun;Kim, Pan-Gun;Park, Sang-Hu;Bae, Won-Byong;Kim, Ju-Wan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.995-1002
    • /
    • 2012
  • In a refrigerator, many food boxes are stored, so the flow of chilly air has very complicate stream paths inside the room of a refrigerator. Moreover, on some occasions, there is no flow of chilly air in a space due to blocking flow paths by food boxes, which is an important issue to be settled for improving the ability of food storage with fresh states. One of methods to solve this problem is to redesign the flow-pattern of chilly air to be uniform flow inside room, if possible. In this work, we have tried to design the duct-structure for the uniform flow of a chilly air using a FE-analysis method. And we conducted real commercial tests using a refrigerator having the redesigned duct. The results showed that good agreements with general requirements.

EXPERIMENTAL STUDY OF TURBULENCE MANIPULATION IN STEPPED SPILLWAYS. IMPLICATIONS ON FLOW RESISTANCE IN SKIMMING FLOWS

  • GONZALEZ CARLOS A.;CHANSON HUBERT
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09a
    • /
    • pp.588-589
    • /
    • 2005
  • Current expertise in air-water turbulent flows on stepped chutes is limited to laboratory experiments at low to moderate Reynolds numbers on flat horizontal steps. In this study, highly turbulent air-water flows skimming down a large-size stepped chute were systematically investigated with a $22^{\circ}$ slope (Fig. 1). Turbulence manipulation was conducted using vanes or longitudinal ribs to enhance interactions between skimming flows and cavity recirculating regions (Fig. 2). Systematic experiments were performed with seven configurations. The results demonstrated the strong influence of vanes on the air-water flow. An increase in flow resistance was observed consistently with maximum flow resistance achieved with vanes placed in a zigzag pattern.

  • PDF

EFFECT OF THE CHANNEL STRUCTURE ON THE COOLING PERFORMANCE OF RADIATOR FOR TRANSFORMER OF NATURAL CONVECTION TYPE (자연대류를 이용한 변압기용 방열기의 채널 구조가 방열성능에 미치는 영향)

  • Kim, D.E.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.86-93
    • /
    • 2014
  • Increased demand of power-transformer's capacity inevitably results in an excessive temperature rise of transformer components, which in turn requires improved radiator design. In this paper, numerical simulation of the cooling performance of an ONAN-type (Oil Natural Air Natural) radiator surrounded by air was performed by using CFX. The natural convection of the air was treated with the full-model. The present parametric study considers variation of important variables that are expected to affect the cooling performance. We changed the pattern and cross-sectional area of flow passages, the fin interval, the flow rate of oil and shape of flow passages. Results show that the area of flow passage, the fin interval, the flow rate of oil and shape of flow passages considerably affect the cooling performance whereas the pattern of flow passages is not so much influential. We also found that for the case of the fin interval smaller than the basic design, the temperature drop decreases while a larger interval gives almost unchanged temperature drop, indicating that the basic design is optimal. Further, as the flow rate of oil increases, the temperature drop slowly decreases as expected. On the other hand, when the shape of flow passages are changed, temperature drop is increased, indicating that the cooling performance is enhanced thereupon.

Research on Air Flow Rate Test Method for Blower System (송풍 시스템의 공기유량측정 방법에 관한 연구)

  • Lee, Jun-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • This study conducted the measurements of air flow rate for blower systems with experiment and numerical. A new airflow rate test method is suggested, with which it is possible to accurate measurements and calculate the air flow rate for blower systems. The blower(axial fan) is an industrial fluid machine device that supplies a large amount of air by driving an impeller with an electric motor, and it is widely used throughout the industry such as steel, power plant, chemical, semiconductor, LC D, food, and cement. The airflow from the blower is for exchanging the heat in the cooling unit or heat exchanger. The temperature of coolants and hydraulic oil primarily depends on the amount of airflow rate through the cooling package so its accurate estimation is very important. Moreover, it required a larger investment in time and cost since it could not be executed until the system is actually made. Therefore, this research is intended to examine the phenomenon of air flow pattern when testing air flow rate, suggested new test method, and show the result of the validation test.

Numerical Study on Indoor Air Quality Based on Age of Air for the Underfloor Air Distribution System (수치해석을 이용한 바닥공조 시스템의 공기환경 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin;Lee, Won-Keun;Moon, Ki-Sun;Kim, Jongryul;Lee, Kwang-ho
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.40-46
    • /
    • 2016
  • In order to improve air quality of indoor environment, studies of the underfloor air distribution (UFAD) system for application in buildings are actively in progress based on temperature and air flow distribution. However, although the age of air is the major evaluation parameter, there has been very little study on this parameter for the UFAD system. In this study, we investigated the age of air to reach the air diffuser, which is installed at the bottom of the interior by the UFAD system. Computational fluid dynamics simulations showed no regular pattern to the maximum value of the age of air in accordance with air flow rate and the velocity at air diffuser. These factors can be deduced from air movement by considering that air emitted from air conditioners was rotated according to the bottom shape of the floor, and then, the age of air in the rotation center was increased. The average age of air of internal interior was reduced considerably as the flow velocity at the underfloor air diffuser was increased from 0.5 m/s to 1.0 m/s However, the age of air was not substantially affected with change in the air volume. Moreover, when the flow velocity at the underfloor air diffuser was higher than 1.0 m/s, the age of air showed no significant difference with change in air volume or height of measurement. These results imply that indoor air quality is more substantially influenced by flow velocity than air volume, and the appropriate flow velocity is 1 m/s or more.