• 제목/요약/키워드: air flow

검색결과 6,993건 처리시간 0.031초

Reduction of the Refrigerant-Induced Noise from the Transition of Flow Pattern by Decreasing Tube Diameter

  • Takushima, Akira;Han, Hyung-Suk;Jung, Wei-Bong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제17권2호
    • /
    • pp.37-44
    • /
    • 2009
  • It is well known that a refrigerant-induced noise is caused by two-phase flow in the indoor unit of a heat pump air-conditioner. Especially when the flow pattern in a pipe is intermittent flow, the irregular noise occurs frequently. But it is very difficult to avoid this kind of the noise for the application of air-conditioner. Therefore, in this research, the flow patterns at two-phase flow state in a pipe of the indoor unit for the air-conditioner are researched using cycle simulator at typical cycle conditions. In order to find the relationship between refrigerant-induced noise and flow pattern, the noise patterns are investigated with respect to the estimated flow pattern from the various flow pattern maps. Base on the estimations of the flow patterns by those maps, the refrigerant-induced noise is evaluated as decreasing tube diameter, which can transit the flow pattern from slug to annular flow.

보일러 Windbox내 공기공급 계통의 유량분포 해석 (Analysis of Air Distribution in the Windbox System of the Utility Boiler)

  • 박호영;김성철
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.581-589
    • /
    • 2008
  • The pulverized coal combustion behavior in the utility boiler is very complex since so many physical and chemical processes happen in it, simultaneously. The mixing of pulverized coal with combustion air plays an important role in achieving the efficient combustion and stable boiler operation. The distribution of combustion air supplied to the furnace through the windbox damper system has not been clearly known since the individual measurements of air flow for each air nozzle were not possible, yet. The present study describes the CFD modelling of windbox damper system and aims to obtain the air flow rates and pressure loss coefficients across the present five damper systems, respectively. The one dimensional flow network model has been also established to get air flow distributions across the windbox damper, and applied to the actual plant operation condition. Compared with the designed air flow distribution, the modelled one gives a reasonable agreement. For the actual plant operation, the predicted air flow distribution at each air nozzle is differed with the designed data and strongly affected by the individual opening angle.

대형천연가스차량의 공연비제어기 설계를 위한 엔진모델 (An Engine Model of a Heavy-Duty Compressed Natural Gas Engine for Design of an Air-Fuel Ratio Controller)

  • 심한섭;이태연
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.80-87
    • /
    • 2003
  • Air partial pressure ratio and inlet air mass flow are influenced by water vapor and gaseous fuel in mixture on Compressed Natural Gas (CNG) engines. In this paper, the effects of the water vapor and the gaseous fuel that change the air mass flow and the air-fuel ratio are studied. Effective air mass ratio is defined as the air mass flow divided by mixture mass flow, and also it is applied to the estimation of the inlet air mass flow and the air-fuel ratio. The presence of the gaseous fuel and the water vapor in the mixture reduces the air partial pressure and the effective air mass ratio of the CNG engines. The experimental results for the CNG engine show that estimation of the air-fuel ratio based upon the effective air mass ratio is more accurate than that of a normal mode.

트랙트용 미드 모어의 공기 유동 특성에 관한 연구(I) (A Study on Air Flow Characteristics of Mid-mower for Tractor(I))

  • 김해지;김삼희
    • 한국기계가공학회지
    • /
    • 제14권3호
    • /
    • pp.27-35
    • /
    • 2015
  • Recently, the work machine is widely used in the agricultural machine and to use the power source of the tractor, the mower had been widely used as a working machine for mowing. The mower is classified as a front mower, mid-mower, and rear mower according to the mounting position of the lower frame on tractor. The main structure of mower is composed of deck, gearbox, and blade. This study concerns a study on air flow characteristics of Mid-mower for tractor. An air flow characteristics of the Mid-mower deck was evaluated by the velocity vector, flow path, and total air flow according to the number of revolutions. As the analysis results, The inner path of designed deck had no effect on air flow.

선회유동을 이용한 펠릿연소기의 화염안정화 연구 (A Study on The Flame Stability of Pellet Combustor Using Swirling Flow)

  • 이도형;윤봉석;왕진위
    • 동력기계공학회지
    • /
    • 제18권5호
    • /
    • pp.35-41
    • /
    • 2014
  • The wood pellet, which is one of the woody biomass energy, has very high economic efficiency and combustion efficiency during their combustion. The existing pellet burner have many problems such as low combustion efficiency, flame stabilization, ash problem and ignition time etc. We developed cyclonic wood pellet burner aim to 20,000kcal/hr boiler and measured temperature profiles and exhaust gases in order to investigate the flame stability and optimum combustion condition at any air flow conditions. As results, we confirmed the reappearance and the isotropy of the experimental results in the burner. At the first air flow inlet condition of excess air ratio ${\alpha}=0.02$, second air flow $490{\ell}/min$ had the best combustion condition when pellet supplied 30g. This result means that we need much air supply only for the swirling of second air flow. So we tested various second air flux at first air excess air ratio ${\alpha}=0.7$ condition. At this condition, we could find out that we don't need much second air and total air flux compared to the former condition. We will continuously test this work of air flow distribution, and swirl effect of first air flow, and ash elimination.

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An experimental study on cooling characteristics of mist impinging jet on a flat plate)

  • 전상욱;정원석;이준식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구 (An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate)

  • 전상욱;정원석;이준식
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

A Study on the Flow Field Characteristics of Air Induction System for Reducing the Signal-to-Noise in the MAFS Output

  • 유성출
    • 한국분무공학회지
    • /
    • 제5권1호
    • /
    • pp.49-57
    • /
    • 2000
  • This study presents the flow visualization results, velocity and turbulence intensity measurements made within an air filter cover and entry region of a mass air flow sensor (MAFS) which is used in an induction system of 3.8L engine. Flow structure in two air filter cover assemblies were examined. The first was a clear plastic replica of the production cover while the second was a modified clear plastic cover with a geometry configured to reduce fluctuations. High speed flow visualization and laser doppler velocimetry (LDV) systems were used to reveal and analyze the flow field characteristics encountered in the sensor design process under steady flow conditions. A 40-watt copper vapor laser was used as a light source. Its beam is focused down to a sheet of light approximately 1.5mm thick. The light scattered off the particles was recorded by a 16mm high speed rotating prism camera at 5000 frames per second. A comparison of the flow patterns and LDV measurements in the original and modified air filter covers is presented to illustrate the controlling effect of the cover design on the turbulence structure formation near the bypass and on the sensor output signal. In both axial and radial planes of the main passage it was found that the turbulence flow pattern is remarkably influenced by the air filter cover and main passage configuration.

  • PDF

AIR ENTRAINMENT AND ENERGY DISSIPATION AT STEPPED DROP STRUCTURE

  • Kim Jin Hong
    • Water Engineering Research
    • /
    • 제5권4호
    • /
    • pp.195-206
    • /
    • 2004
  • This paper deals with oxygen transfer by air entrainment and energy dissipations by flow characteristics at the stepped drop structure. Nappe flow occurred at low flow rates and for relatively large step height. Dominant flow features included an air pocket, a free-falling nappe impact and a subsequent hydraulic jump on the downstream step. Most energy was dissipated by nappe impact and in the downstream hydraulic jump. Skimming flow occurred at larger flow rates with formation of recirculating vortices between the main flow and the step comers. Oxygen transfer was found to be proportional to the flow velocity, the flow discharge, and the Froude number. It was more related to the flow discharge than to the Froude number. Energy dissipations in both cases of nappe flow and skimming flow were proportional to the step height and were inversely proportional to the overflow depth, and were not proportional to the step slope. The stepped drop structure was found to be efficient for water treatment associated with substantial air entrainment and for energy dissipation.

  • PDF

차압예냉에서 청과물 상자의 적재방법에 따른 송풍저항 예측모델 개발 (An air flow resistance model for a pressure cooling system based on container stacking methods)

  • 김의웅;김훈;한재웅;이효재
    • 한국식품저장유통학회지
    • /
    • 제20권3호
    • /
    • pp.289-295
    • /
    • 2013
  • 차압예냉시스템을 설계하기 위해서는 송풍저항을 정확하게 예측해야 하며, 송풍저항은 청과물의 적재방법에 따라 크게 달라진다. 본 연구는 차압예냉시스템에서 송풍량에 따른 송풍저항식과 상자의 적재방법별로 송풍저항을 측정할 수 있는 모델을 개발하기 위하여 수행되었다. 공을 퇴적한 모형상자에서의 송풍저항은 빈 상자에서의 송풍저항과 공 퇴적층만의 송풍저항을 합한 값보다 1.5배 정도 높게 나타났다. 또한, 적재상자에서의 송풍저항은 통기폭 방향 적재상자수의 증가에 따라 지수적으로 증가하였으나, 적재길이와 적재높이의 영향은 거의 받지 않았다. 상자를 2열로 적재하는 차압예냉시스템에서 송풍저항은 1개 상자에서의 송풍저항을 기초로 예측이 가능하였으며, 예측모델을 제시하였다.