• Title/Summary/Keyword: air flow

Search Result 6,984, Processing Time 0.034 seconds

Aerodynamic Study on Pneumatic Separation of Grains(I) -An Experimental Study on The Vertical Wind Tunnel- (곡물(穀物)의 공기선별(空氣選別)에 관(關)한 공기동력학적(空氣動力學的) 연구(硏究)(I) -수직풍동(垂直風胴)의 설계(設計)에 관(關)한 실험적(實驗的) 연구(硏究)-)

  • Lee, C.H.;Cho, Y.J.;Kim, M.S.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.272-281
    • /
    • 1989
  • It is desirable for the vertical wind tunnel which can build uniform air flow across the vertical duct to be used for the purpose of the investigation of the aerodynamic properties of grains. This study was conducted to examine how the air velocity profile in the vertical duct is influenced by the various alternations of the elements of the wind tunnel, and to prepare design guidance of the vertical wind tunnel which can be used for investigating aerodynamic properties of grains. In addition, several tests were conducted to locate the test section which can be applicable for determining the terminal velocity of grain. The following conclusions were obtained from the study: 1. The size and the location of the outlet of the plenum chamber should be determined such that the outlet air flow is less affected by the air flow and the back pressure by the side wall of the chamber. 2. The honeycomb was not helpful for attaining uniform air flow in case that the air flow profile at the bottom of the vertical duct is serverely different from the ideal one. 3. Even though considerable pressure drop was resulted from the screens installed within the vertical duct, the screens were helpful for attaining uniform air flow in the duct. 4. It is desirable for the test section to be located at the position that not only the air flow of the duct is not disturbed by the distorted back pressure in the plenum chamber, but also less boundary layer is developed.

  • PDF

Air Flow and Heat Transfer Analysis of Personal Environment Module System (개별환경제어시스템의 열 및 유동 해석)

  • 조은준;서태범;박영철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.4
    • /
    • pp.252-261
    • /
    • 2001
  • Room air flow and temperature distribution was numerically investigated where a PAC(personal air conditioning) system was installed. The calculated results were compared with those from experiments. The effects of the important operation parameters such as the air flow rate, velocity, and temperature at the diffuser on the thermal performance of the system were studied. The possibility of energy saving using the PAC system was verified from the results, It was shown that the warm air from the diffuser could not spread over the whole task area if the inlet temperature was too high.

  • PDF

Convergent Investigation with Internal Flow Analysis According to the Opening and Closing of Vehicle Window (차량 창문 개폐에 따른 내부에서의 유동 해석으로의 융합적 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • In this study, the pleasant driving environment of the driver and passenger in the summer was investigated through the internal flow analysis of air due to the opening and closing of the car windows. The conditions on the entrance of the air conditioner with the opening and closing status of vehicle window were applied to the flow analysis by taking into consideration the actual driving environment. The automotive air conditioning outlet, the seat and the inside of car were modeled. As the air flow inside the car was analyzed, the air flow configuration and the temperature distribution were examined. In this analysis, the results were taken in consideration of only the effects of internal air and the opening and closing of window, assuming the interior of the vehicle as insulation. The analysis of each condition shows that these models maintain a pleasant environment. It is seen that this analysis result on the internal flow analysis according to the opening and closing of vehicle window can be applied by converging with the field of design.

Respiratory Air Flow Transducer Applicable to Cardiopulmonary Resuscitation Procedure (인공심폐소생술에 활용 가능한 호흡기류센서)

  • Kim, Kyung-Ah;Lee, In-Kwang;Lee, You-Mi;Yu, Hee;Kim, Young-Il;Han, Sang-Hyun;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.833-839
    • /
    • 2013
  • Cardiopulmonary resuscitation (CPR) is performed by thoracic compression and artificial ventilation for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are facing the whole area perpendicular to the flow axis. The present study developed a new air flow transducer conveniently applicable to CPR. Specially designed "sensing rod" samples the air velocity at 3 different locations of the flow cross-section, then transforms into average dynamic pressure by the Bernoulli's law. The symmetric structure of the sensing holes of the sensing rod enables bi-directional measurement simply by taking the difference in pressure by a commercial differential pressure transducer. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1%. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

Experimental Study on the Channel Type Heat Sink to Maintain Proper Temperature Cycle of Bio-Sample (바이오 시료의 적정온도 사이클 유지를 위한 채널형 히트싱크에 대한 실험적 연구)

  • Jeong-Gyu Hwang;Sang-Hee Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.183-191
    • /
    • 2023
  • This study was conducted experimentally to investigate the surface temperature of the heat sink, the air temperature in the flow channel and the sample temperature by changing the channel number of channel type heat sink and the air flow rate when heating and cooling the bio sample. The target temperature of the sample was 15℃ or less as the minimum value and 82℃ or more as the maximum value. In this study, the channel number of the heat sink(N = 1, 2, 4, 5, 10) and the air flow rate(Q=25, 42, 54m3/min) were varied. The bio sample was replaced with water, and the volume of water is 4mL. The size of the heat sink is 80x73x150mm and the material is aluminum. When cooling the sample, the surface temperature, the air temperature and the sample temperature were highly dependent on the number of channels and the flow rate. However, when the sample is heated, the surface temperature, air temperature and sample temperature do not depend on the number of channels and the flow rate. It was found that the conditions for satisfying the minimum temperature of 15℃ or less when cooling the sample were the number of channels N≥5 and the flow rate Q≥42m3/min. When heating the sample, the conditions to satisfy the maximum temperature of 82℃ or more are the number of channels N≤5 and the air flow rate Q≤42m3/min.

Study on Influence of Air Flow of Ceiling Type Air Conditioner on Fire Detector Response (천장형에어컨 기류가 화재감지기 작동에 미치는 영향 분석)

  • Choi, Moon-Soo;Lee, Keun-Oh
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.40-45
    • /
    • 2018
  • This paper is an analysis of the influence of ceiling air conditioner airflow on fire detector response. In order to analyze the response characteristics of fire detector while forming air flow of a ceiling-type air conditioner, fire tests were carried out in accordance with ISO standard. This experiment was carried out in a fire test site of 10 m (width) ${\times}$ 7 m (length) ${\times}$ 4 m (height). As a result of the experiment, the response of fire detector shows a normal pattern that is delayed as the distance from the fire source is increased in the absence of the air conditioner, but it is confirmed that the pattern is not maintained in the strong air flow. When the air flow of air conditioner was strong, the response time was increased by 121% in the smoke detector and by 39% in the heat detector. In the case of ceiling type air conditioners, it is considered that the number of fire detectors should be increased, or a detector with high sensitivity should be installed for early detection of fire.

Flow Properties of Polypropylene Fiber Reinforced High flow Concrete (폴리프로필렌 섬유보강 고유동 콘크리트의 유동 특성)

  • Noh, Kyung-Hee;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • This study was performed to evaluate flow properties of polypropylene fiber reinforced high flow concrete. Test results were showed that the slump, slump flow and L-type compacting were decreased with increasing the content of polypropylene fiber. But, the Box-type passing and air content were increased with increasing the content of polypropylene fiber. The slump was $25.5{\sim}27.5cm$, the slump flow was $60{\sim}65cm$, the Box-type passing was $2{\sim}6cm$, the L-type compacting was excellent and air content was $2.7{\sim}3.2cm%$ by the polypropylene fiber content 0.2%, respectively. This concrete can be used for high flow concrete.

A Study on the Performance of a Centrifugal Pump with Two-Phase Flow (기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구)

  • Lee, Jong C.;Kim, Youn J.;Kim, C.-S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

Air Jet Effect on Performance Improvement of Non-Contact Type Seals for Oil Mist Lubrication Systems (공기분사가 오일미스트 윤활 시스템용 비접촉 시일의 성능 향상에 미치는 영향)

  • Na, Byeong-Cheol;Jeon, Gyeong-Jin;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2159-2166
    • /
    • 2000
  • Recently, high performance machining center requires special type of sealing mechanism that prevent a leakage of oil jet or oil mist lubrication system. Sealing of oil-air mixture plays important r oles to have an enhanced lubrication for performance machining center. Current work emphasizes on investigations of the air jet effect on the protective collar type labyrinth seal. To improve sealing capabilities of conventional labyrinth seals, air jet is injected against the leakage flow. In this study, an adapted model is introduced to improve sealing capability of conventional non-contact type seals. It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. The sealing effects of the leakage clearance and the air jet magnitude aic studied in various parameters. Gas or liquid has been used as a working fluid for most of nori-contact types seals including the labyrinth seal. However, it is more reasonable to regard two-phase flows because oil mist or oil jet are used for high performance spindle's lubrication. In this study, working fluid is regarded as two phases that are mixed flow of oil and air phase. Both of turbulence and compressible flow model are also introduced in a CFD analysis to represent an isentropic process. Estimation of non-leaking property is determined by amount of pressure drop in the leakage path. Results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effect of the sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger

Study on optimization technique for the design of ventilation system of subway (지하철 환기시스템의 최적화에 관한 연구)

  • 김광용;조재형;리쉬밍;양태윤
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.630-639
    • /
    • 1998
  • The present research aimed at development of a computer code for the optimal design of ventilation system based on one-dimensional analysis of the air flow. Model experiment and three-dimensional flow analysis have been implemented to determine loss coefficients that were needed for the optimization technique. A research on optimum shape of ventilation shaft has been also carried out through the three-dimensional analysis of the flow.

  • PDF