• Title/Summary/Keyword: air filtration

Search Result 229, Processing Time 0.023 seconds

Treatment of Phosphorus and Suspended Solid in Reject Water of Sewage Using an Integrated Slow Mixing/Sedimentation and Net Fit Fiber Filtration System (일체형 완속교반/침전 그물망 압착식 섬유여과장치를 이용한 하수처리장 반류수 내 고농도 인 및 부유물질 처리)

  • Kim, Jeongsook;Kim, Min-Ho;Kim, Mi-Ran;Jang, Jeong-Gook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.816-821
    • /
    • 2017
  • An integrated slow mixing/sedimentation and net fit fiber filtration system has been developed to reduce the high concentrations of suspended solid (SS) and total phosphorus (T-P) in the reject water from sewage/wastewater. A filtration device used in this experiment consists of coagulation, in-line mixing, air injection, slow mixing/sedimentation, and filtration processes. The performance test using this device was carried out with six operational modes for reject water from sewage treatment plant. Experimental conditions used were 16.7, 33.3, 41.7 and 50.0 ton/day of flow rate and 2~4 of Al/P molar ratio. By injection of coagulant in each operational mode, the high removal efficiencies of SS and T-P were obtained, but continuous operation time was decreased to 7.8~11.4 min in most modes. However, when the Mode 5 of the developed filtration device was applied, the continuous operation time was maintained up to 88.2 min. Also, it was found that the continuous operation time in the Mode 5 using the developed system was increased from 8 to 11.3 times longer than those in other modes. Backwashing flow rate was also very low at 5.4% of total filtered water. Therefore, it can be concluded that the Mode 5 of the developed filtration system was the most efficient treatment method for the removal of high concentrations of SS and T-P.

Flow Analysis of Yellow Dust Multi-Layer Mask for Maximization of Filtration Area (여과면적이 극대화된 황사용 주름마스크의 유동해석)

  • Jang, Sung-Cheol;Kim, Han-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.4
    • /
    • pp.339-343
    • /
    • 2017
  • Masks are a portable functional product for daily use. They can protect user health by filtering harmful fine particles in the air. In the past decade, there have been approximately 10 yellow dust incidences per year, amounting to a total duration of 20 days, and they continue to increase year after year. In addition, the frequency of yellow dust incidences in Korea has increased by more than four times compared to levels from the 1970s. Statistical reports indicate that annual damages caused by yellow dust amount to more than six trillion KRW. This study developed a zero-fog multi-layer mask with a collection efficiency and yellow dust and particulate matter filtration areas that are at least thrice as effective as existing masks. The new mask also reduces pressure drag by half.

Effect of Porous Filter Structure on Specific Cake Resistance and Porosity in Dead-end Filtration (Dead-end Filtration에서 Dust Cake 비저항과 기공율에 대한 다공성 필터 구조의 영향)

  • 이선희;조영민;유정근
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.405-406
    • /
    • 2003
  • 분진여과시 형성되는 분진 케이크는 궁극적인 여과 성능을 좌우하며, 필터의 구조, 분진 입자의 형태나 크기, 분진농도, 여과속도 등에 의해 영향을 받는다 특히 필터의 표면 구조나 기공 크기는 여과 초기 단계의 케이크 층의 구조를 결정하며, 연속적인 여과시 초기 케이크 층은 다음에 쌓이는 케이크 형성과 비저항에 영향을 주므로 필터 medium 구조 또한 분진여과 과정에서 중요한 영향 요인이 된다. 본 연구에서는 필터 medium의 구조가 서로 다른 고온가스정화용 복합 세라믹 필터, metal fiber mat, 스테인레스 필터를 이용하여 분진농도와 여과속도를 변수로 하여 분진 여과 실험을 함으로써 각각의 필터에 대한 케이크 비저항과 기공율을 실험과 이론식으로부터 추정하였다. (중략)

  • PDF

Aerosol filtration and electrostatic properties of electrospun nanofiber air filters (전기방사 나노섬유 에어필터의 정전기적 특성 및 에어로졸 여과특성)

  • Park, Hyun-Seol;Lim, Koung Soo
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.71-81
    • /
    • 2009
  • In this study, Nylon 6,6 electrospun (ES) nanofiber filter media were prepared at various spinning conditions. The ES filters tested had no intrinsic electrical charges. The ES filters were triboelectrically charged in the course of filter sample handling, and the charge was drastically decayed in a few hours. On the other hand, the corona charged melt blown filter media showed a permanent electrical charge. The electrical charge state of the ES filters was also examined by comparing collection efficiencies of ES filters for uncharged and charged aerosol particles.

  • PDF

Study of Magnetic Filtration for Subway MVAC Dust (지하철 공조실 미세먼지에 대한 자성포집연구)

  • Park, Hae Woo;Chung, Sang Gui;Jo, Young Min
    • Particle and aerosol research
    • /
    • v.11 no.2
    • /
    • pp.37-46
    • /
    • 2015
  • Dust particles, which inflow to the subway mechanical ventilation and air conditioning(MVAC) chamber, contain a fair amount of iron compounds, approximately 25.2w/w%. This work attempted to capture those iron containing dust using magnetic filters. Average magnetization value of the test MVAC dust was 0.012 emu on 5,000 Oe, which could correspond sufficiently with the magnetic interaction. External permanent magnets provided with magnetization of iron mesh screen showing high gradient magnetic field(HGM). It resulted in the capture efficiency with 84.0 ~ 99.7% and 81.2 ~ 99.8% for $PM_{10}$ and $PM_{2.5}$ respectively. Magnetic capture was found to be closely associated with the magnetic intensity, mesh opening size and flow velocity.

A Study on the Removal Characteristics of Indoor Air Pollutants using the Air Cleaning System (실공간에서 공기정화시스템을 이용한 실내 오염 입자 제거 특성에 관한 연구)

  • Koo, Jeong-Hwan;Kim, Seong-Chan;Kim, Jang-Woo;Lee, Ju-Yong;Lee, Jae-Keun;Kang, Tae-Wook;Lee, Kam-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.532-537
    • /
    • 2000
  • The purpose of this study is to determine the performance of a commercial air cleaner in removing tobacco smoke indoors. Following injection of tobacco smoke in a room, decay rates for particle concentrations were obtained far mass concentration at each point. The size distribution of the tobacco smoke particles was approximately $1.266{\mu}m$ in mass median diameter with a geometric standard deviation of 1.313. The air cleaner consisted of an electrostatic filtration unit and a fan operated at a flow rate of 5.98 CMM. The collection efficiency for $>1\;{\mu}m$ was more than 99%. Without air cleaner operation, tobacco smoke concentration ratio in room decreased to 30% of initial values within 30 minutes and with air cleaner operation, decreased to 90% of initial values in the test chamber, volume $51.27\;m^3$. Without air cleaner operation, tobacco smoke concentration ratio in room decreased to 10% of initial values within 30 minutes and with air cleaner operation, decreased to 30-70% of initial values in the test chamber, volume $149.2\;m^3$.

  • PDF

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF

Operating Parameters and Performance of Biotrickling Filtration for Air Pollution Control (대기오염물질 제어를 위한 생물살수여과법의 운전인자와 성능평가)

  • Won, Yang-Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.474-484
    • /
    • 2005
  • Biological treatment is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreactor, in particular biotrickling filters. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. While the level of understanding of biotrickling filtration process for VOCs still remains limited, the evident success of biotreatment of VOC in air stimulated the pursue of acitve research. This paper presents fundamental and theoretical/practical aspect of air pollution control in biotrickling filter. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control in biotrickling filter.

Prediction of Venturi Effect on Pressure Drop in Pulse Air Jet Bag Filter (충격기류식 여과집진장치에서 벤츄리가 압력손실에 미치는 영향)

  • Moon-Sub Jung;Jung-Kwon Kim;Yong-Hyun Chung;Jeong-Min Suh
    • Journal of Environmental Science International
    • /
    • v.32 no.9
    • /
    • pp.659-669
    • /
    • 2023
  • The purpose of this study is to predict the pressure drop due to the installation of venturi under diverse operating conditions such as dust concentration, pulse interval and pressure, and filtration velocity using algebraic-linear regression model and use it as an economic data and efficient operating condition for a pulse air jet bag filter. A pilot scale bag filter with a filter a filter size(Ø140 × 850ℓ, 12) was used, and the filters used in the experiment were the polyester filters most commonly used in real industrial sites. The SAS 9.4 program (SAS Institute, USA) was used to predict and to determine the effects of inlet concentration (Ci), pulse interval (Pi) and pressure (Pp), filtration velocity (Vf), presence or absence of venturi, etc. The results are shown below. The variation in pressure drop with or without venturi installation was 38.8 mmAq when venturi is installed and 47.6 mmAq when venturi is not installed, indicating a difference in pressure drop of 8.8 mmAq depending on venturi installation. It is estimated that the efficiency can be improved by about 18.5% if the venturi is installed.

Effects of Pleating Parameters on Characteristics of Cylindrical Cartridge Air Filters (원통형 카트리지 에어 필터(cartridge Air filters)의 절곡 변수에 따른 집진 성능 변화)

  • Park, H.S.;Park, S.J.;Kim,, S.D.;Choi, H.K.;Lim, J.H.;Park, Y.O.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.154-157
    • /
    • 2001
  • The effects of pleating parameters on the performance of cylindrical cartridge air filters was experimentally studied. The tested filters are 150 mm in outer diameter and 700 mm in length. As the pleat count increases, the pressure drop across a cartridge filter is decreased for a constant pleat depth and flow rate. This is due to the increased filtration area which brings out less pressure loss of the filter. However, in the case of the filters having the pleat depth of 40 mm, the inner diameter of the cartridges is so small that the pressure loss is greatly increased.

  • PDF