• Title/Summary/Keyword: air dispersion model

Search Result 198, Processing Time 0.104 seconds

Numerical Simulations of Using CIP Method for Dispersion of Pollutants around a Building (CIP 방법을 이용한 건물 주위의 오염물 확산에 대한 수치해석)

  • Hong, Bo-Young;Park, Chan-Guk
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.723-728
    • /
    • 2001
  • Wind flow perturbations, recirculations and turbulence generated by buildings often dominate air pollutant distributions around buildings. This paper describes dispersion of contaminants in the vicinity of a building by solving the concentration equation based on previously simulated wind flow field. Turbulence closure is achieved by using the standard k-e two-equation model. The paper shows application of the CIP method for solving a species concentration equation of contaminant gas around a rectangular building for two different sources under conditions of neutral atmospheric stratification. Results have been compared to the experimental data and the previous numerical results by hybrid scheme. The computational results of concentration profiles by the CIP method agree well with experimental data.

  • PDF

The Sensitivity Analysis and Modeling for the Atmospheric Dispersion of Point Source (점오염원의 대기확산에 관한 민감도 분석과 모델링)

  • 이화운;원경미;배성정
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • The sensitivity analysis of two short-term models (ISCST3, INPUFF2.5) is performed to improve the model accuracy. It appears that the sensitivities on the changes of wind speed, stack height and stack inner diameter in the near distance from source, stability and mixing height in the remote distance form source, are significant. Also the gas exit velocity, stack inner diameter, gas temperature and air temperature which affect the plume rise have some effects on the concentration values of each model within the downwind distance where final plume rise is determined. And in modeling for the atmospheric dispersion of point pollutant source INPUFF2.5 can calculate amount, trajectory of puff and concentration versus time at each receptors. So, it is compatible to analyze distribution of point pollutants concentration at modeling area.

  • PDF

Numerical Simulation on Dispersion of Fume Micro-Particles by Particle Suction Flows in Laser Surface Machining (입자 석션유동에 따른 레이저 표면가공의 마이크로 흄 오염입자 산포 특성 해석연구)

  • Kyoungjin Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.1-6
    • /
    • 2023
  • In CO2 laser surface machining of plastic films in modern display manufacturing, scattering of fume particles could be a major source of well-recognized film surface contamination. This computational fluid dynamics research investigates the suction air flow patterns over a film surface as well as the dispersion of micron-sized fume particles with low-Reynolds number particle drag model. The numerical results show the recirculatory flow patterns near laser machining point on film surface and also over the surface of vertical suction slot, which may hinder the efficient removal of fume particles from film surface. The dispersion characteristics of fume particles with various particle size have been tested systematically under different levels of suction flow intensity. It is found that suction removal efficiency of fume particles heavily depends on the particle size in highly nonlinear manners and a higher degree of suction does not always results in more efficient particle removal.

  • PDF

Experimental and Numerical Study on the Air-assist Atomizer Spray Droplets (2유체 분무 액적의 거동에 관한 실험 및 수치 해석적 연구)

  • Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.65-76
    • /
    • 1998
  • An experimental and numerical study of a spray flow is performed to investigate the spray characteristics using an air-assisted atomizer. A Partical Dynamic Analyzer(PDA) is used to measure SMD, dmp velocity, and drop number density whose the initial conditions have considerable effect on the numerical results. The measured experimental data have been used to asses the accuracy of model predictions. Numerical investigation is made with the Eulerian - Lagrangian formulism. Turbulent dispersion effects using a Monte-Carlo method, turbulent modulation effect and entrainment of air are also numerically simulated. Results show that the numerical predictions of SSF(Stochastic Separated Flow) analysis yielded reasonable agreement with the experimental data. However, the model calculations for small drops produced the inconsistent numerical results due to the effect of surrounding air entrainment.

  • PDF

Tracer Experiment for the Investigation of Urban Scale Dispersion of Air Pollutants - Simulation by CALPUFF Dispersion Model and Diffusion Feature of Tracer Gases (추적자 확산 실험에 의한 서울 도심 확산 현상 연구 - 추적기체의 확산특징과 CALPUFF 모델에 의한 모사)

  • Lee, Chong-Bum;Kim, Jea-Chul;Lee, Gang-Woong;Ro, Chul-Un;Kim, Hye-Kyeong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.4
    • /
    • pp.405-419
    • /
    • 2007
  • A series of tracer experiments for the evaluation of atmospheric dispersion was performed over the urban area of Seoul using two inert, non-deposition perfluorocarbon (PMCH and m-PDCH) gases during three years campaign on 2002, 2003 and 2005. 30 sampling sites for collecting these tracers were located along two arcs of 2.5 and 5 kilometers downwind from the release point. About ten measurements which each lasted for 2 hours or 4 hours were made over the two consecutive days during each campaign. CALPUFF and MM5 meteorological model were applied to evaluate the urban dispersion in detail. Size of Modeling domain was $27\;km{\times}23\;km$ and the fine nest in the modeling domain had a grid size of 0.5 km. The results showed that CALPUFF dispersion model had a tendency to estimate tracer concentrations about $2{\sim}5$ times less than those of ambient samples under many conditions. These consistent inaccuracy in urban dispersion was attributed to inherent inaccuracy and lack of details in terrain data at urban area.

Estimation of the Effective Region of Sea/Land Breeze in West Coast Using Numerical Modeling (수치모델링을 이용한 서해안 지역에서의 해륙풍 영향권 산정에 관한 연구)

  • Jeong, Ji-Won;Lee, Im-Hack;Lee, Hee-Kwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.259-270
    • /
    • 2008
  • The regional air movement in a coastal area is generated by the different heat capacities of sea and land sides, which is called sea/land breeze. In the west coast area, the local air quality is significantly influenced by this sea/land breeze. In this study, the mathematical model is proposed to estimate the effective area of sea/land breeze. A commercial air model, that is suggested as an alternative air model by USEPA, is introduced to simulate the mechanism of sea/land breeze generation. From this study, it is confirmed that the numerical approach proposed in this study is reliable to predict the effective area of sea breeze in a coastal area. It implies that the current application of common air model needs to be carefully reviewed especially when dealing with a coastal air quality issue. It is also found that the sea breeze in Incheon area has the impact in the range of approximately 24 km in-land side, so-called penetration length.

Influence of Major Urban Construction on Atmospheric Particulates and Emission Reduction Measures

  • Wang, Shunyi;Zhou, Ping;Lin, Limin;Liu, Chuankun;Huang, Tao
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.215-231
    • /
    • 2018
  • In order to understand the variation of air quality and the concentration of atmospheric particulates in Chengdu Second Ring Road renovation project, this paper starts to investigate the surrounding residents' opinions on the influenced environment and their daily lives via questionnaires. Then the study numerically simulates the change rule of atmospheric particulates in terms of time and space by using the Gaussian dispersion-deposition model and the compartment model. The optimized scientific scheme is selected by the improved fuzzy analytical hierarchy process(FAHP) to help decision making for the future urban reconstructions. Finally, the reduced emissions of atmospheric particulates are measured when the improvement scheme is provided. According to the study, it can be concluded that the concentration of atmospheric particulates increases rapidly in central Chengdu city during the renovation project, which results in worsening air quality in Chengdu during March 2012 to March 2013. Taking related measures on energy saving and emission reduction can effectively reduce the concentration of atmospheric particulates and promote economic, environmental and social coordination.

Sidewalk Gaseous Pollutants Estimation Through UAV Video-based Model

  • Omar, Wael;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.

A Three Dimensional Numerical Simulation of $SO_2$ Concentration in Relation with Atmospheric Flow in Pusan Area, Korea (부산지역에서의 대기흐름과 관련된 $SO_2$농도 3차원 수치모의)

  • 장은숙;이화운
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.359-367
    • /
    • 1997
  • The Characteristics of atmospheric flow and dispersion of air pollutants in the mountainous coastal area were studied using three-dimensional model by the combination of land/sea breezes and transport. It was then applied to Pusan city. As the urban area considered In this study is located in a mountainous coastal area, the atmospheric flow is strongly affected by the land/sea breezes and mountain/valley winds. The typical effects of land/sea breezes on the dispersion and the characteristics of pollutants movement in the region were analysed. The model has been proved to be an useful tool to prodict real time air pollutants transport as shown by the results of application studies In Pusan, Korea which Is an urbanized coastal area with mountainous topography. It was found that the pollutants are differently transported and concentrated as going Inland by the Influence of the sea breeze with topographic changes. By comparing the pollutants concentrations of the stimulated results with those of the observational results, It is shown that stimulated results in this study are in qualitative agreement with observational ones.

  • PDF

Development of Simulation Model for Diffusion of Oil Spill in the Ocean (III) - Oil-droplet spreading measurement using 3-dimensional digital image processing technique- (해양유출기름의 확산 시뮬레이션 모델개발 (III) -3차원 디지털화상처리를 이용한 유적의 퍼짐 계측 -)

  • 이중우;도덕희;김기철;강신영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.1
    • /
    • pp.47-55
    • /
    • 2000
  • A three-dimensional digital image processing technique is proposed to quantitatively predict the dispersion phenomena of oil droplet onto the surface of the water. This technique is able to get the dispersion rate of an oil droplet three-dimensionally just below the surface of the water over time. The obtained dispersion rate obtained through this technique is informative to the investigation into the relationship among the gravity, surface tensions between oil, water, and air. This technique is based upon the three-dimensional PIV(Particle Imaging Velocimetry) technique and its system mainly consists of a three CCD(Charge Coupled Device) cameras, an image grabber, and a host computer in which an image processing algorithm is adopted for the acquisition of dispersion rate oil an oil droplet.

  • PDF