• Title/Summary/Keyword: air density correction

Search Result 24, Processing Time 0.028 seconds

Development of a polystyrene phantom for quality assurance of a Gamma Knife®

  • Yona Choi;Kook Jin Chun;Jungbae Bahng;Sang Hyoun Choi;Gyu Seok Cho;Tae Hoon Kim;Hye Jeong Yang;Yeong Chan Seo;Hyun-Tai Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2935-2940
    • /
    • 2023
  • A polystyrene phantom was developed following the guidance of the International Atomic Energy Association (IAEA) for gamma knife (GK) quality assurance. Its performance was assessed by measuring the absorbed dose rate to water and dose distributions. The phantom was made of polystyrene, which has an electron density (1.0156) similar to that of water. The phantom included one outer phantom and four inner phantoms. Two inner phantoms held PTW T31010 and Exradin A16 ion chambers. One inner phantom held a film in the XY plane of the Leksell coordinate system, and another inner phantom held a film in the YZ or ZX planes. The absorbed dose rate to water and beam profiles of the machine-specific reference (msr) field, namely, the 16 mm collimator field of a GK PerfexionTM or IconTM, were measured at seven GK sites. The measured results were compared to those of an IAEA-recommended solid water (SW) phantom. The radius of the polystyrene phantom was determined to be 7.88 cm by converting the electron density of the plastic, considering a water depth of 8 g/cm2. The absorbed dose rates to water measured in both phantoms differed from the treatment planning program by less than 1.1%. Before msr correction, the PTW T31010 dose rates (PTW Freiberg GmbH, New York, NY, USA) in the polystyrene phantom were 0.70 (0.29)% higher on average than those in the SW phantom. The Exradin A16 (Standard Imaging, Middleton, WI, USA) dose rates were 0.76 (0.32)% higher in the polystyrene phantom. After msr correction factors were applied, there were no statistically significant differences in the A16 dose rates measured in the two phantoms; however, the T31010 dose rates were 0.72 (0.29)% higher in the polystyrene phantom. When the full widths at half maximum and penumbras of the msr field were compared, no significant differences between the two phantoms were observed, except for the penumbra in the Y-axis. However, the difference in the penumbra was smaller than variations among different sites. A polystyrene phantom developed for gamma knife dosimetry showed dosimetric performance comparable to that of a commercial SW phantom. In addition to its cost effectiveness, the polystyrene phantom removes air space around the detector. Additional simulations of the msr correction factors of the polystyrene phantom should be performed.

Radiographic and CT Diagnosis Of Otitis Media In a Dog (개에서 컴퓨터 단층촬영상을 통한 중이염의 진단)

  • 이기창;서은정;권정국;송경진;윤정희;최민철
    • Journal of Veterinary Clinics
    • /
    • v.21 no.2
    • /
    • pp.184-186
    • /
    • 2004
  • A castrated male, 6 year-old Shih-Tzu, weighing 4.6 kg with a discharge from the external ear canal and a mal-odor was referred to Verterinary Medical Teaching Hospital, Seoul National University. Radiographic findings were narrowing and focal loss of an air density in the left ear canal and bilateral thickening of the osseous bullae. For more detail examination, computed tomography was used. In computed tomographic findings, bilateral thickening of the bulla wall and increased opacity of the bulla space were observed. Thus this dog was diagnosed as bilateral otitis media. Then surgical correction, total ear canal ablation, was performed successfully and the patient showed a good prognosis thereafter. It is considered that computed tomography might serve as an useful imaging tool for otitis media and that it supplies information not obtained with a conventional radiography.

Comparative Analysis of Commercial Softwares for Wind Climate Data Analysis (풍력자원 계측자료 분석용 상용 소프트웨어 비교분석)

  • Kim, Hyun-Goo
    • New & Renewable Energy
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2010
  • This paper reviews three commercial softwares for wind climate data analysis in wind resource assessment; WAsP/Observed Wind Climate, WindRose and Windographer. Windographer is evaluated as the best software because of its variety of input data format, analysis functions, easiness of user interface, etc. For a quantitative understanding of uncertainty depending on software selection, a benchmark is carried out with the met-mast observation dataset at the Gimnyeong Wind Turbine Performance Test Site. It is found that Weibull parameter calculation and air density correction have a dependency on the software so that such uncertainty should be considered when an analysis software is selected. It is confirmed that annual energy production calculated by WAsP using a statistical table of frequency of occurrence may have some error compared to a time-series calculation method used by the other softwares.

Heat Transfer Correlation to Predict the Evaporation of a Water Droplet in Superheated Steam during Reflood Phase of a LOCA

  • Kim, Yoo;Ban, Chang-Hwan
    • Journal of Energy Engineering
    • /
    • v.9 no.3
    • /
    • pp.261-268
    • /
    • 2000
  • A heat transfer correlation to predict the vaporization of a water droplet in highly superheated steam during a loss-of-coolant accident(LOCA) of a nuclear power plant is provided. Vaporization of liquid fuel or water droplets in superheated air or steam and subsequent interface heat transfer between a liquid droplet and superheated gas is typically correlated by way of a Nusselt number as a function of Reynolds number, Prantl number, and in some cases including mass transfer number. Presently available correlations and experimental data of the evaporation of liquid droplets in air or steam are analyzed and a new Nusselt number correlation is proposed taking Schmidt number into consideration in order to account for binary diffusion of the vapor as well, Nu$\_$f/(1+B)$\^$0.7/=2+0.53Sc$\_$f/$\^$-1/5/Re$\_$M/$\^$$\sfrac{1}{2}$/Pr$\_$f/$\^$$\sfrac{1}{3}$/ for which properties are evaluated at film condition except the density of Reynolds number evaluated at ambient condition. Diverse correlations for various combinations of liquid and gas species are put into single equation. The blowing correction factor of (1+B)$\^$0.7/ is confirmed appropriate, and a criterion to distinguish so-called high- and low-temperature condition of ambient gas is set forth.

  • PDF

Investigation of Scatter and Septal Penetration in I-131 Imaging Using GATE Simulation (GATE 시뮬레이션을 이용한 I-131 영상의 산란 및 격벽통과 보정방법 연구)

  • Jung, Ji-Young;Kim, Hee-Joung;Yu, A-Ram;Cho, Hyo-Min;Lee, Chang-Lae;Park, Hye-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.72-79
    • /
    • 2009
  • Scatter correction for I-131 plays a very important role to improve image quality and quantitation. I-131 has multiple and higher energy gamma-ray emissions. Image quality and quantitative accuracy in I-131 imaging are degraded by object scatter as well as scatter and septal penetration in the collimator. The purpose of this study was to estimate scatter and septal penetration and investigate two scatter correction methods using Monte Carlo simulation. The gamma camera system simulated in this study was a FORTE system (Phillips, Nederland) with high energy, general-purpose, parallel hole collimator. We simulated for two types of high energy collimators. One is composed of lead, and the other is composed of artificially high Z number and high density. We simulated energy spectrum using a point source in air. We estimated both full width at half maximum (FWHM) and full width at tenth maximum (FWTM) using line spread function (LSF) in cylindrical water phantom. We applied two scatter correction methods, triple energy window scatter correction (TEW) and extended triple energy window scatter correction (ETEW). The TEW method is a pixel-by pixel based correction which is easy to implement clinically. The ETEW is a modification of the TEW which corrects for scatter by using abutted scatter rejection window, which can overestimate or the underestimate scatter. The both FWHM and FWTM were estimated as 41.2 mm and 206.5 mm for lead collimator, respectively. The FWHM and FWTM were estimated as 27.3 mm and 45.6 mm for artificially high Z and high density collimator, respectively. ETEW showed that the estimation of scatter components was close to the true scatter components. In conclusion, correction for septal penetration and scatter is important to improve image quality and quantitative accuracy in I-131 imaging. The ETEW method in scatter correction appeared to be useful in I-131 imaging.

  • PDF

Comparison of Experimental and Radiation Therapy Planning (RTP) Dose Distributions on Air Cavity (공동(air cavity)의 존재 시 실험적 선량분포와 치료계획상의 선량분포 비교)

  • Kim, Yon-Lae;Suh, Tae-Suk;Ko, Shin-Gwan;Lee, Jeong-Woo
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.261-268
    • /
    • 2010
  • This study is compared that the dose distribution by experimentation and radiation therapy planning (RTP) when the air cavity region was treated high energy photon. The dose measurements were performed with a 6 MV photon beam of linear accelerator. The polystyrene and self made acyl phantom were similar to tissue density of the human body. A parallel plate chamber was connected to an electrometer. The measurement setup was SCD (Source Chamber Distance) 100 cm and the distance of surface from air cavity was 3 cm. Absorbed dose of interface were measured by area and height. The percent depth dose were measured presence and absence of air cavity, depth according to a ratio of field size and air cavity size. The dose distribution on planning was expressed to do the inhomogeneity correction. As the area of air cavity was increased, the absorbed dose were gradually reduced. It was slightly increased, when the height of air cavity was changed from 0 cm to 0.5 cm. After the point, dose was decreased. In case of presence of air cavity, dose after distal air cavity interface was more great than absence of air cavity. The rebuild up by field size and area of air cavity occurred for field size, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$ and $6{\times}6\;cm^2$, with fixed on area of air cavity, $5{\times}5\;cm^2$. But it didn't occur at $10{\times}10\;cm^2$ field size. On the contrary, the field size was fixed on $5{\times}5\;cm^2$, rebuild up occurred in area of air cavity, $4{\times}4\;cm^2$, $5{\times}5\;cm^2$. but, it did not occur for air cavity, $2{\times}2\;cm^2$, $3{\times}3\;cm^2$. All of the radiation therapy planning were not occurred rebuild up. It was required to pay attention to treat tumor in air cavity because the dose distribution of planning was different from the dose distribution of patient.

Adaptive maximum power point tracking control of wind turbine system based on wind speed estimation

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.460-475
    • /
    • 2018
  • In the variable-speed wind energy system, to achieve maximum power point tracking (MPPT), the wind turbine should run close to its optimal angular speed according to the wind speed. Non-linear control methods that consider the dynamic behavior of wind speed are generally used to provide maximum power and improved efficiency. In this perspective, the mechanical power is estimated using Kalman filter. And then, from the estimated mechanical power, the wind speed is estimated with Newton-Raphson method to achieve maximum power without anemometer. However, the blade shape and air density get changed with time and the generator efficiency is also degraded. This results in incorrect estimation of wind speed and MPPT. It causes not only the power loss but also incorrect wind resource assessment of site. In this paper, the adaptive maximum power point tracking control algorithm for wind turbine system based on the estimation of wind speed is proposed. The proposed method applies correction factor to wind turbine system to have accurate wind speed estimation for exact MPPT. The proposed method is validated with numerical simulations and the results show an improved performance.

Trends of Stability Indices and Environmental Parameters Derived from the Rawinsonde Data over South Korea

  • Eom, Hyo-Sik;Suh, Myoung-Seok
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.461-473
    • /
    • 2011
  • In this paper, trends of the widely used stability indices (SIs) and environmental parameters (EPs) were examined by using the 30-year routine rawinsonde data observed in three upper air observatories (Osan, Gwangju and Pohang) over South Korea. To take into account of the contribution of water vapor to a parcel density, we applied the virtual temperature correction in calculating the SIs and EPs. The trends of SIs and EPs indicated significant increases of temperature and moisture contents, especially at the low-to-mid troposphere during the last 10 years. The warming trend in the lower troposphere shows about 3 times greater than that of the global average (+0.10- $+0.20^{\circ}C$/10 years), whereas the cooling trend of lower stratosphere demonstrates a similar trend with the global average (-0.33- $-0.60^{\circ}C$/10 years). The vertical stability is clearly reduced due to the unsymmetrical change of atmospheric elements. The unstabilizing trend with the increased moisture contents gradually changed the atmospheric environment in South Korea into the conditions favorable for the occurrence of severe weather or intensifications of such events. These trends are consistent with the recent observations, which showed clear increase in the intensity and frequency of heavy rainfalls.

Dose Distribution According to the Tissue Composition Using Wedge Filter by Radiochromic Film (쐐기필터 사용 시 레디오크로믹 필름을 이용한 조직에 따른 선량분포 연구)

  • Kim, Yon-Lae;Lee, Jeong-Woo;Park, Byung-Moon;Jung, Jae-Yong;Park, Ji-Yeon;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.35 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • The purpose of this study is to analyze the dose distribution when wedge filter is used in the various tissue electron density materials. The dose distribution was assessed that the enhanced dynamic wedge filter and physical wedge filter were used in the solid water phantom, cork phantom, and air cavity. The film dosimetry was suitable simple to measure 2D dose distribution. Therefore, the radiochromic films (Gafchromic EBT2, ISP, NJ, USA) were selected to measure and to analyze the dose distributions. A linear accelerator using 6 MV photon were irradiated to field size of $10{\times}10cm^2$ with 400 MUs. The dose distributions of EBT2 films were analyzed the in-field area and penumbra regions by using dose analysis program. In the dose distributions of wedge field, the dose from a physical wedge was higher than that from a dynamic wedge at the same electron density materials. A dose distributions of wedge type in the solid water phantom and the cork phantom were in agreements with 2%. However, the dose distribution in air cavity showed the large difference with those in the solid water phantom or cork phantom dose distributions. Dose distribution of wedge field in air cavity was not shown the wedge effect. The penumbra width, out of the field of thick and thin, was observed larger from 1 cm to 2 cm at the thick end. The penumbra of physical wedge filter was much larger average 6% than the dynamic wedge filter. If the physical wedge filter is used, the dose was increased to effect the scatter that interacted with photon and physical wedge. In the case of difference in electron like the soft tissue, lung, and air, the transmission, absorption, and scattering were changed in the medium at high energy photon. Therefore, the treatment at the difference electron density should be inhomogeneity correction in treatment planning system.

Corrections on CH4 Fluxes Measured in a Rice Paddy by Eddy Covariance Method with an Open-path Wavelength Modulation Spectroscopy (개회로 파장 변조 분광법과 에디 공분산 방법으로 논에서 관측된 CH4 플럭스 자료의 보정)

  • Kang, Namgoo;Yun, Juyeol;Talucder, M.S.A.;Moon, Minkyu;Kang, Minseok;Shim, Kyo-Moon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • $CH_4$ is a trace gas and one of the key greenhouse gases, which requires continuous and systematic monitoring. The application of eddy covariance technique for $CH_4$ flux measurement requires a fast-response, laser-based spectroscopy. The eddy covariance measurements have been used to monitor $CO_2$ fluxes and their data processing procedures have been standardized and well documented. However, such processes for $CH_4$ fluxes are still lacking. In this note, we report the first measurement of $CH_4$ flux in a rice paddy by employing the eddy covariance technique with a recently commercialized wavelength modulation spectroscopy. $CH_4$ fluxes were measured for five consecutive days before and after the rice transplanting at the Gimje flux monitoring site in 2012. The commercially available $EddyPro^{TM}$ program was used to process these data, following the KoFlux protocol for data-processing. In this process, we quantified and documented the effects of three key corrections: (1) frequency response correction, (2) air density correction, and (3) spectroscopic correction. The effects of these corrections were different between daytime and nighttime, and their magnitudes were greater with larger $CH_4$ fluxes. Overall, the magnitude of $CH_4$ flux increased on average by 20-25% after the corrections. The National Center for AgroMeteorology (www.ncam.kr) will soon release an updated KoFlux program to public users, which includes the spectroscopic correction and the gap-filling of $CH_4$ flux.