• Title/Summary/Keyword: air current speed

Search Result 255, Processing Time 0.027 seconds

An Analysis of Heat Transfer Coefficient of Soil Surface in Closed Ecosystems Using CFD (CFD를 이용한 폐쇄생태계 내 토양표면의 열전달계수 분석)

  • Roh, Sang-Mok;Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.1
    • /
    • pp.85-95
    • /
    • 2006
  • A model experiment has been performed to get the heat transfer coefficient on the soil surface in the closed ecosystem. The heat flux on the soil surface was measured and the heat transfer coefficient was derived in the following two cases with 5-stepped control of inside air current speed. One case was that heat flowed from air to soil and the other case was that heat flowed from soil to air. Three dimensional CFD model has been set to simulate thermal environment in the closed ecosystem including soil layers. The standard $k-{\varepsilon}$ model of the CFD program was chosen for turbulence model and heating wire buried in the soil layers was set as heat source option to simulate the case when the temperature of soil surface was higher than that of inside air in the closed ecosystem. Between one case that heat flowed from air to soil and the other case that heat flowed from soil to air, there were big differences in the temperature distribution of soil layers and the heat transfer coefficient of the soil surface. The increasing rate of heat transfer coefficient on each case according to the increase of inside air current speed was similar to each other and it respectively increased linearly. But the heat transfer coefficient on the case that heat flowed from soil to air was much bigger than that of the other case. The model was validated by comparing simulated values of CFD model with measured values of the model experiment. Simulated and measured temperature of inside air and soil layers, and heat transfer coefficient of the soil surface were well accorded and the range of corrected $R^2$ was 0.664 to 0.875. The developed CFD model was well simulated in parts of the temperature of inside air and soil layers, the distribution of the inside air current speed, and heat transfer coefficient of the soil surface were able to be quantitatively analyzed by using this model. Therefore, the model would be applied and used for analysis of heat transfer coefficient between air and surface in various agricultural facilities.

  • PDF

Development of High Fidelity Supersonic Flow Air Data Processing Algorithm (고 신뢰도 초고속 공기 유동 데이터 처리 알고리즘 개발)

  • Choi, Jong-Ho;Yoon, Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.54-62
    • /
    • 2010
  • This paper describes the development of high fidelity air data processing algorithm which can be applied into an air data system for a high speed aerial vehicle. Unlike the previous air data system, current algorithm used several pre-determined pressure data which were obtained with computational fluid dynamic approach without using total pressures having enough sensor redundancy and fault detection ability. The verification of current algorithm was done by commercial software Matlab and Simulink.

Oceanography in the Waters Adjacent to Kamchatka and Kurile islands in the Northwestern Pacific - II (북서태평양 명태 어장의 해황 - 2 . 기후의 특성 -)

  • Han, Young-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.13 no.1
    • /
    • pp.17-25
    • /
    • 1977
  • For four calender years (1971-1974), daily observations of weather conditions (air temperature, humidity, wind speed, wind direction, cloud amount, fog, precipitation etc.) at six stations in the north western Pacific Ocean are used to calculate mean monthly values and to check extra-conditions. At Petropavlosk and Miko'skoe, where indicate the characteristics of modified continental climate, the temperature and humidity are high in summer, and Iow in winter. At A Dak and She Mya, where indicate the characteristics of warm current type maritime climate, humidity is high in all season and annual range of air temperature is nearly negligible. At Simusir and Vasi!' eva, where indicate the characteristics of cold current type maritime climate, humidity is high in all season and annual range of air temperature is $15^{\circ}C.$ As dry cooling power is relatively high in winter, working condition on deck is bad. Most of fogs are advection fog in the area of cold current type climate in summer.

  • PDF

Effect of Agitation Speed and Air Rate on Separation Efficiency in Fly Ash Flotation (플라이애시 부유선별 과정에서 교반속도와 공기주입량 변화에 따른 영향 연구)

  • Kim, Min Sik;Kang, Heon Chan
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.45-54
    • /
    • 2018
  • This study aimed to investigate the effects of mechanical factors such as agitation speed and air rate in fly ash flotation. Specifically, we used thermal power plant fly ash with unburned carbon content of 3.4 to 3.7%. The effect of pH, agitation speed, collector dosage, and frother dosage - the key factors of froth flotation - showed unburned carbon recovery and unburned carbon content of 63% and 34%, respectively, when the dosage of safflower oil used as collector was 800 g/ton, pH was 7, agitation speed was 1,200 rpm, and frother dosage was 400 g/ton. The SEM/EDS analysis of fly ash in that case indicated that the spherical fly ash particles lowered the unburned carbon content as they floated with the air bubbles without being dissolved in the unburned carbon or settled in the ore solution. The other experiment of changing the mechanical factors such as agitation speed and air rate resulted in unburned carbon recovery and unburned carbon content of 74% and 67%, respectively, at air rate of 8 L/min and agitation speed of 900 rpm. The recovery and unburned carbon content increased as the low agitation speed and additional air injection decreased the strength of the eddy current in the ore solution and consequently prevented the floating of fine fly ash particles with unburned carbon. In addition, the recovery rate and unburned carbon increased further to 80% and 70%, respectively, showing the best performance when the agitation speed and air rate were lowered to 800 rpm and 6 L/min, respectively.

A Study on Sensorless Control Methods for BDCM Drives (브러시리스 직류전동기를 위한 센서리스 제어 방식에 관한 연구)

  • 김윤호;조병국;국윤상
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.62-70
    • /
    • 1995
  • Brushless DC Motor (BDCM) is widely used in the industry such as a variable speed motor in a compressor for room air conditioners, because the motor can be easily controlled and operated over a wide speed range. The system to drive BDCM needs encoder that senses rotor position. Gut in a certain application, the position sensor has to be avoided. In the paper, various position sensorless drive systems for BDCM are investigated and critically evaluated, so that the effective method of sensorless control can be selected. Out of these methods, the freewheeling diode current sensing has many advantages. For example, the simple starting procedure makes it possible to perform sensorless control even in low speed. So the hardware design for this method has been carried out and the system has been implemented using DSP. The experimental results verified that the freewheeling diode current sensing approach has advantages in starting procedure and low speed sensing.

  • PDF

A Study on the Characteristics of Methane-Air Premixture Combustion and Combustion Radicals (1) (밀폐 연소실내의 메탄-공기 예혼합기의 연소 및 라디칼 특성에 관한 연구 (1))

  • Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.659-669
    • /
    • 1996
  • To clarify the effects of equivalence ratio, initial pressure and temperature on the flame propagation and radicals characteristics, a series of the experimental study were conducted in a quiescent methane-air premixture using a constant volume chamber. The development of the flame was visualized following the start of ignition using high speed schlieren photo and radical images by intensified CCD camera. Combustion pressure and ion current were recorded simultaneously according to the experimental conditions which were equivalence ratio with 0.7 to 1.2, initial pressure with 0.08 MPa to 0.40 MPa and initial premixture temperature with 3l3.2K to 403.2K. The results showed that the flame speed by ion current and mass fraction burned by combustion pressure characterized the effects of flame propagation very well. And increased combustion duration due to lean combustion condition that was below equivalence ratio, 0.8 caused cycle variation and decreasing the power of engine.

Effects of $\textrm{CO}_2$ concentration and air current speed on the growth and development of plug seedlings under artificial lighting (인공광하에서 $\textrm{CO}_2$ 농도와 기류속도 제어가 플러그묘의 생육에 미치는 효과)

  • 송대빈;김용현
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.275-280
    • /
    • 1999
  • This study was conducted to investigate the effects of $CO_2$ concentration(310 or 950$\mu$ mol.mol$^{-1}$ ) and air current speed(0.3, 0.5, 0.7 or 0.9m.s$^{-1}$ ) on the growth and development of eggp1ant Plug seedlings (Solanum melongena L.) under artificial 1ighting. For the treatment of $CO_2$ enrichment, stem length and diameter, the ratio of stem length to stem diameter, plant height, leaf area, net photosynthetic rate, top dried weight were significantly different at 1% level. Stem length of plug seedlings decreased at the condition under enriched $CO_2$ and high air current speed above plug stand. Stem diameter of plug seedlings increased and plant height decreased with the increasing $CO_2$ concentration. Plug seedlings had maximum net photosynthetic rate at the air current speed of 0.7m.s$^{-1}$ . Net photosynthetic rate at $CO_2$ concentration of 950$\mu$mol.mol$^{-1}$ increased by 46% than those at 310$\mu$mol.mol$^{-1}$ . Thus $CO_2$ enrichment would be effective for the production of plug seedlings with high quality.

  • PDF

An Experimental Study on Sealing Performance Improvement for Oil Mist Luibrication Environment (오일 미스트 윤활환경의 밀봉성능향상을 위한 실험적 연구)

  • 나병철;전경진;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.76-82
    • /
    • 1998
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. Current work is emphasized on the investigation of the air jet effect on the protective collar type labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet is injected against through the leakage flow. It has a combined geometry of a protective collar type and an air jet type. In this study, both of a numerical analysis by CFD(Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. Both of the turbulence and the compressible flow model are introduced in CFD analysis. The sealing effect of the leakage clearance and the air jet magnitude are studied for various parameter in the experiment. The results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effects of sealing improvement are explained as decreasing of effective leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger.

  • PDF

A Study on the Stimulus Reaction of PBLG (Poly-${\gamma}$-Benzyl $_L$-Glutamate의 자격반응에 관한 연구)

  • Kim, Beyung-Geun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1413-1415
    • /
    • 2002
  • The Displacement current measurement system used in this experiment because detecting the dynamic behavior of monolayers at the air-water interface is possible. It basically consists of a film balance, a pair of electrodes connected to each other through a sensitive ammeter. Here, one electrode is suspended in air and the other electrode is placed in the water. PBLG phase transformation measured by Maxwell-displacement-current-measurement method in surface of the water. Measured (surfacc pressure, displacement current and dipole moment) of monolayers of PBLG on the water surface. We measured displacement current that occur when changed temperature(15, 20, 25$^{\circ}$ ) and the compression speed(30, 40, 50(mm/min)). From the result, it is known that curren generated in the range of high surface pressur compression velocity and temperature become faste.

  • PDF