• 제목/요약/키워드: air current

검색결과 2,403건 처리시간 0.039초

공극 변류기의 2차 전류 보상 (Compensation for the Secondary Current of an Air-gapped Current Transformer)

  • 강용철;정태영;장성일;김용균;박지연
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.149-154
    • /
    • 2008
  • An air-gapped current transformer(CT) has been used to reduce a remanent flux in the core, particularly in the case of auto-reclosure. However, it causes larger transient, ratio and phase errors than the iron-cored CT because of the small magnetizing inductance. This paper proposes a compensation algorithm for the secondary current of the air-gapped CT during the fault conditions including auto-reclosure as well as in the steady-state. The core flux is calculated from the measured secondary current of the CT and inserted into the hysteresis loop to estimate the exciting current. Finally, the correct current is estimated by adding the measured secondary current to the estimated exciting current. Various test results clearly indicate that the proposed compensating algorithm can improve the accuracy of the air-gapped CT significantly and reduce the required core cross-section of the air-gapped CT significantly.

부하조건이 마그네슘-공기연료전지의 출력특성에 미치는 영향 (The Effect of Load Conditions for the Power of Mg-Air Fuel Cell)

  • 김용혁
    • 전기학회논문지P
    • /
    • 제61권3호
    • /
    • pp.134-139
    • /
    • 2012
  • The power characteristics of the Mg-Air fuel cell were investigated with regard to variation of load conditions. The types of load current using for the Mg-Air fuel cell with 10% NaCl electrolyte were step type, ramp type and pulse type. It was found that transient phenomena occurred in the step current load, which is due to activate of the oxidation-reduction reaction process. And the transient time increase with the load current increase. In the load current of ramp type, the slop of voltage drop increased with current load slop ${\alpha}$ increase. The load voltage and power decreased according to the pulse period of load current decrease were attributed to the metal sludges.

가변 주파수 전류 제어에 의한 다이어프램의 압력제어 (Air-pressure Control of Diaphragm using Variable Frequency Current Control)

  • 임근민;이동희
    • 전력전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.258-265
    • /
    • 2011
  • 본 논문은 다이어프램의 공기압력을 제어하기 위한 가변 주파수 전류 제어기를 제안한다. 제안된 제어기는 기존의 다이어프램의 공기압력을 제어하는 방법과는 달리 단상 인버터를 이용하여 상 전류와 주파수를 제어한다. 한 상의 전류는 다이어프램의 지령 공기 압력을 추종하도록 조절되고, 전류 주파수는 기계적인 진동을 줄이기 위해 변화한다. 일정한 공기압력으로 부드럽게 변화하기 위해서 전류 주파수는 전류 제어기에서 제어전압에 따라 제어되며, 이 때의 상전류가 일정한 공기압력에 만족하게 되면 전류주파수는 다이어프램의 진동을 줄이기 위해 증가된다. 제어 전압에 의한 상 전류가 지령값보다 높게 되면 전류 주파수는 공기압력을 추종하기 위해 감소된다. 제안된 제어방식은 상용 다이어프램을 이용한 실험을 통해 확인하였다.

공극이 도입된 철심에 코일의 자기결합을 이용한 초전도한류기의 고장전류 제한 및 히스테리시스 특성 (Fault Current Limiting and Hysteresys Characteristics of a SFCL using Magnetic Coupling of Two Coils on the Iron Core with an Air-Gap)

  • 임성훈;김재철
    • 조명전기설비학회논문지
    • /
    • 제25권2호
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper, the fault current limiting and the hysteresys characteristics of a superconducting fault current limiter (SFCL) using magnetic coupling of two coils on the iron core with an air-gap were analyzed. The introduction of the air-gap in the SFCL with magnetically coupled two coils can suppress the saturation of the iron-core and, on the other hand, make the limiting impedance of the SFCL decreased, which results from the increase of the exciting current. To analyze the effect of the aig-gap on the fault current limiting characteristics of the SFCL, the hysteresys curves of the iron core comprising the SFCL were derived from the short-circuit experiment and the variation in the voltage-current trace of the SFCL during the fault period was analyzed. Through the comparison with the current limiting characteristics of the SFCL without air-gap, the air-gap could be confirmed to contribute to the suppression of the iron core's saturation through the increase of the SFCL's burden from the short-circuit current.

피체험자 생활이력을 이용한 쾌적기류 도출에 관한 기초연구 (Basic study of comfortable air movement for subjects to use the occupation experience)

  • 김만수;금종수;김형철;정백영;최호선
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2002년도 추계학술대회 논문집
    • /
    • pp.97-102
    • /
    • 2002
  • Resident's agreeableness anger elevation request by improvement of life environment with economy development is increasing recently. However, research about air current estimation in dwelling environment that make use of air conditioner summer and cooling room is lacking going yet much. We are going to prefer most air current pattern(speed 3 steps of swing) that offer in PAC after figure processing because user's life hysteresis and present air current pattern that is supposed and offer more agreeable environment to room resident.

  • PDF

기류속도가 인공광하에서 공정육묘 개체군의 미기상에 미치는 영향 (Effects of Air Current Speed on the Microclimates of the Plug Stand under Artificial Light)

  • 김용현;고재풍수
    • 생물환경조절학회지
    • /
    • 제5권2호
    • /
    • pp.160-166
    • /
    • 1996
  • 김등과 Kim등이 재발한 공정묘 생산용 풍동을 사용하여, 인공광하의 묘개체군내외에서 기온, 상대습도 및 포차(vapour pressure deficit) 등의 미기상 특성에 미치는 기류속도의 효과를 분석하였다. 기온차의 최고치가 초장 근처에서 나타났으며, 이러한 결과는 공정묘의 생육이 진행될수록 더욱 분명하게 나타났다. 묘개체군 내부에서는 배지 또는 엽으로부터의 증발산으로 인하여 개체군 외부에서의 기온에 비해서 0.7-l.4$^{\circ}C$ 정도 낮게 나타났는데, 기류속도가 낮을수록 기온차가 높게 나타났다. 묘개체군 내부의 상대습도 분포에 미치는 기류속도의 영향이 매우 큰 것으로 나타났다. 기류속도가 증가할수록 묘개체군 내외에서의 상대습도차는 작게 나타났는데, 이것은 기류속도의 증가에 따라 엽에서의 water potential이 감소되었기 때문인 것으로 판단된다. 배지표면으로부터의 높이가 증가함에 따라 포차가 증가하였다. 이와 같은 결과는 수증기 유속의 흐름이 상방향으로 이루어짐을 의미하는 것이다. 생육단계에 따른 포차의 변화는 엽면적 지수가 클수록 수직방향으로의 기울기가 크게 나타났다. 한편, 후부에서의 상대습도 및 포차는 중앙부에서 보다 약간 낮게 나타났다. 기류속도에 따라 묘개체군의 수직방향 및 기류진행방향으로 기온, 상대습도 및 포차의 기울기가 크게 나타났는데, 이러한 미기상 요소의 기울기는 묘개체군의 불균일 생장을 초래할 수 있다.

  • PDF

CFD분석을 통한 기류식 분쇄기 날개부의 최적설계 (Optimum Design for an Air Current Pulverizing Blade Using the Computational Fluid Dynamics)

  • 김건회;김한빛
    • 한국기계가공학회지
    • /
    • 제19권8호
    • /
    • pp.8-14
    • /
    • 2020
  • In the air current pulverizing type grinding method, the blade wings fitted inside a casing are rotated at a high speed to generate a cornering air current, which facilitates the collision of materials with one another, leading to the pulverizing phenomenon. In contrast to mechanical grinding, grit pulverizing leads to fine grinding and less acid waste and degeneration of the material. Moreover, this approach prevents the loss of nutritional value, while allowing the milling grain to have an excellent texture. However, the existing air current pulverizing type machines consist of prefabricated blades, which cannot be rotated at a speed higher than 5,000 rpm. Consequently, the grinding process becomes time consuming with a low productivity. To overcome these problems, in this study, the shape and structure of the air current pulverizing type wings were optimized to allow rapid grinding at more than 8,000 rpm. Moreover, the optimal design for the ripening parts for the air current pulverizing type device was determined by performing a computational fluid dynamics analysis based on airflow analyses to produce machinery that can grinding materials to the order of micrometers.

인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과 (Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

정상상태에서 공극 변류기의 보상 (Compensation of an Air-Gapped Current Transformer in the steady state)

  • 강용철;박지연;소순홍;장성일;김용균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.15-17
    • /
    • 2006
  • This paper proposes a compensation method for an air gapped current transformer (CT) in the steady state. An air gapped CT is used in order to reduce a remanent flux in the case of auto-reclosure. It causes larger ratio and angle errors than the closed core CT because the magnetizing inductance of an air-gapped CT is even smaller than the closed-core CT. The core flux is calculated and used to estimate the exciting current in accordance with the hysteresis curve of the air-gapped CT The correct current is obtained by adding the estimated exciting current to the measured secondary current. The performance of the method was investigated for the air gapped CTs with a gap of 0.083mm and 0.249mm for the 120%, 100% and 20% of the rated current. Various test results indicate that the proposed compensation algorithm can improves the accuracy significantly.

  • PDF

CFD를 이용한 피트의 지중열 모델 구축에 관한 연구 (A Geothermal Model of Pit Area Using Computational Fluid Dynamics)

  • 민준기;김정태
    • KIEAE Journal
    • /
    • 제8권5호
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.