• Title/Summary/Keyword: air content

Search Result 2,481, Processing Time 0.027 seconds

Development of Kiln Drying Schedule of Lesser-Known Species Imported from Solomon (수입 솔로몬산(産) 미이용(미利用) 수종(樹種)의 인공건조(人工乾燥)스케쥴 개발(開發))

  • Jung, Hee-Suk;Sim, Jae-Hyeon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 1986
  • A study was conducted to determine the physical properties related to drying characteristics, the seasonal air drying curves and the kiln drying schedule for taun lumber imported and utilized. This kiln drying schedule was found by oven drying and developed by pilot testing of green lumber and partially air dried lumber. The results of this study were as follows; 1. Average green specific gravity and standard deviation of heartwood lumber were 0.60${\pm}$0.03 and those of sapwood lumber were 0.64${\pm}$0.02. 2. Radial shrinkage from green to air dry and from green to oven dry were 3.05 percent and 5.96 percent respectively, and tangential shrinkage from green to air dry and to oven dry were 5.49 percent and 8.74 percent respectively. 3. Drying time for 25mm thick green lumber (50 percent moisture content) air dried to 30 percent moisture content were 14 days in springtime. 6 days in summertime, and 12 days in autumntime, whereas for 50mm thick lumber in 36 days in springtime, 18 days in summertime, 38 days in autumntime. 4. Kiln drying schedules developed by oven drying were T8-B3 for 25mm thick lumber and T5-B2 for 50mm thick lumber. 5. Kiln drying curves of green 25mm and 50mm thick lumber were similar to those of partially air dried lumber from the level of 30 percent average moisture content. Green 25mm thick lumber (55.7 percent moisture content) was dried to 9.3 percent moisture content in 101.5 hours and green 50mm thick lumber (65.6 percent moisture content) was dried to 11.5 percent moisture content in 526 hours. 6. End checking for green 25mm thick lumber occured in 49.6 percent moisture content and reached maximum amount in 27.6 percent moisture content and closed in 15.8 percent moisture content. 7. End checking for green 50mm thick lumber and partially air dried lumber developed and reached maximum amount earlier then for 25mm thick lumber. 8. Final moisture content of surface layer for 50mm thick lumber was one half of that of core, and moisture content equalized in the lumber after nine days of room conditioning. 9. Casehardening for 50mm thick lumber was slight and was conditioned after nine days of room stroage. 10. Drying defects, such as end checking and surface checking, were not observed and the quality of dry lumber was first.

  • PDF

Estimation on Affecting Factors and Contribution Rate for Air Permeability of Sawdust as Bulking Agent on Composting (퇴비화 첨가재인 톱밥의 공기투과성에 미치는 영향요인 및 기여도 평가에 관한 연구)

  • Kim, Byung Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.52-62
    • /
    • 2015
  • This study estimated the contribution rates of inlet air flow, moisture content, air-filled porosity and particle size on the total pressure drop for the sawdust used as the bulking agent in the composting. The statistical model for pressure drop including the affecting factors was proposed.($R^2=0.998{\sim}0.950$) While the laminar air flow(v) and particle size(SIZE*v) had the positive relations to the total pressure drop, the turbulent air flow($v^2$), moisture content(MC*v) and air-filled porosity(AFP*v) had the negative relations. Total pressure drop sharply increased with increasing of the inlet air flow. And the most significant factors affecting to total pressure drop were the particle size(SIZE*v) as positive factor and air-filled porosity(AFP*v) as negative factor. The contribution rate to total pressure drop by the particle size(SIZE*v) was continuously increased with increasing of the inlet air flow, but the contribution rate by air-filled porosity(AFP*v) was decreased. And total pressure drop was little changed even though the increasing of moisture content above the range of dry moisture content 0.25. The contribution rates of affecting factors had the different tendencies with increasing of the moisture content, especially in the negative factors as air-filled porosity(AFP*v) and moisture content(MC*v). For effective composting process, it is preferable to select the sawdust with higher air-filled porosity as bulking agent to enhance the air permeability.

Proposal of Plane Spacing Factor for Analyzing Air Void System in Concrete (콘크리트 공극 분석을 위한 평면간격계수의 제안)

  • Jeong, Won-Kyong;Choi, Sung-Yong;Kim, Sung-Hwan;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.39-47
    • /
    • 2005
  • Air void systems in hardened concrete has an important influence on concrete durability such as freeze-thaw resistance, water permeability, surface scaling resistance. Linear traverse method and point count method described at ASTM are the routine analysis of the air void system that have been widely used to estimate the spacing factor in hardened concrete. Recently, many concretes often have a spacing factor higher than the generally accepted $200-250{\mu}m$ limit for the usual range of air contents. This study is proposed to estimate the plane spacing factor by calculation of simplicity. The plane spacing factor need two parameters that are air content and numbers of air voids in the hardened concrete. Those obtained from the standard air-void system analysis of the ASTM C 457. The equation is valid for all values of paste-to-air ratio because the estimation of paste content is unnecessary at the using ASTM C 457. The plane spacing factor yields a similar estimate of the standard spacing factor.

  • PDF

A quantitative measurement of concrete air content using image analyses

  • Hwang, C.L.;Peng, S.S.;Wang, E.;Lin, S.H.;Huang, S.L.
    • Computers and Concrete
    • /
    • v.7 no.3
    • /
    • pp.239-247
    • /
    • 2010
  • A proposed topology method is introduced to measure the air content of fresh cement paste and hardened concrete. The method takes advantage of chromatographic analysis in void areas that are highlighted using different color schemes and later calculated using built-in computer software. The air content measured by the topology method is compared with results obtained from the conventional ASTM methods. It is concluded that the proposed method is reliable, and costs less and is easier to operate compared with the ASTM methods. In addition, 3 dimensional pore models can be created using image post-processing techniques. The proposed method helps researchers in understanding the formation and existence of concrete pores. This paper reports a detailed test program demonstrating the standard operating procedure used for the proposed method and presents a comparison of results between the proposed method and conventional ASTM Specifications. It is also concluded that the air content increases with increasing size of pores and increasing percentage of coarse aggregates.

Influence of Unit Water and Viscosity Agents Contents on the Bleeding of Concrete (단위수량 및 증점제량이 콘크리트의 블리딩에 미치는 영향)

  • 김은호;심보길;황인성;전충근;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.232-328
    • /
    • 2001
  • This paper investigates the influences of water content and viscosity agent on the bleeding of concrete. According to test results, fluidity shows decline tendency as water content decreases, and dosage of viscosity agent increases. PEO viscosity agent does not affect the air contents while, MC viscosity agent causes air loss. As for bleeding, bleeding decreases with decrease of water content. As dosage of viscosity agent increase, bleeding decreases, regardless of viscosity kinds. It is thought that viscosity agents have the favorable effect of reducing bleeding, if fluidity and air loss are improved.

  • PDF

Affecting Analysis of Air Content on the Tensile Properties of Strain-Hardening Cementitious Composite (고인성 복합재료의 인장특성에 공기량이 미치는 영향 분석)

  • Jeong, Jae-Hong;Lee, Seung-Hoon;Kim, Han-Jun;Kim, Gyu-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.439-440
    • /
    • 2010
  • The Air content has a great effect on the Tensile Strain of Strain-Hardening Cement Composites. We analyze the Tensile Properties of SHCC with variations of air content from the laboratory test.

  • PDF

Flow Properties of Polypropylene Fiber Reinforced High flow Concrete (폴리프로필렌 섬유보강 고유동 콘크리트의 유동 특성)

  • Noh, Kyung-Hee;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • This study was performed to evaluate flow properties of polypropylene fiber reinforced high flow concrete. Test results were showed that the slump, slump flow and L-type compacting were decreased with increasing the content of polypropylene fiber. But, the Box-type passing and air content were increased with increasing the content of polypropylene fiber. The slump was $25.5{\sim}27.5cm$, the slump flow was $60{\sim}65cm$, the Box-type passing was $2{\sim}6cm$, the L-type compacting was excellent and air content was $2.7{\sim}3.2cm%$ by the polypropylene fiber content 0.2%, respectively. This concrete can be used for high flow concrete.

Properties of Low Heat Portland Cement Concrete by Changing Temperature of Aggregate (골재의 온도 변화에 따른 저발열 포틀랜드 시멘트 콘크리트의 특성)

  • Cho, Yong-Chin;Park, Kwang-Su;Shin, Su-Gyun;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.4
    • /
    • pp.49-55
    • /
    • 2004
  • Properties of concrete using low heat portland cement is different from using ordinary portland cement and temperature of aggregate can be expected to have an important influence on its properties. In this study, experiment by setting up 5 levels (40, 30, 20, 4, $-2^{\circ}C$) by temperature of aggregate for evaluation properties of concrete using low heat portland cement was conducted. The experiments include slump test, air content test, change of slump, change of air content and compressive strength of concrete test. As the result of experiments, slump and air content was decreased by increasing temperature of aggregate. But it was not exceeding it's limit. Change of slump and air content was rapidly decrease by decreasing temperature of aggregate. At early age, compressive strength was influenced by the temperature of aggregate.

Evaluation of Lightweight Soil as a Subgrade Material (경량혼합토의 도로 노상층 재료 사용 가능성 평가)

  • Park, Dae-Wook;Vo, Viet Hai
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.57-64
    • /
    • 2013
  • PURPOSES : It is to evaluate lightweight soil as a subgrade material based on mechanical tests and calculation of pavement performance. METHODS : In this research, various contents of cement and air foam are used to make lightweight soil using wasted dredged soil. Uniaxial compressive strength test is conducted to evaluate strength of 7 and 28 day cured specimens. Secant modulus was calculated based on the stress and strain relationship of uniaxial compressive strength test. Resilient modulus test was measured using by repeated triaxial compression test. The measured resilient modulus was used in layered elastic program to predict fatigue and rutting life at a given pavement structure. RESULTS : Uniaxial compressive strength increases as cement content increases but decrease as air foam content increases. Resilient modulus also increases as cement content increases and decrease as air foam content decrease. CONCLUSIONS : It is concluded that dredge clay soil can be used as subgrade layer material using by lightweight treated soil method.

Structural Control of the Compound Layers formed during Nitrocarburising in NH3-Air-C3H8 Atmospheres (NH3-Air-C3H8 분위기에서 Nitrocarburisng시 형성된 Compound Layer의 조직제어)

  • Kim, Y.H.;Choi, K.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.289-301
    • /
    • 1995
  • The effect of Air/$C_3H_8$ gas addition on the compound layer growth of steels nitrocarburised in $NH_3+Air+C_3H_8$ mixed gas atmospheres was investigated. It is considered that amount of residual $NH_3$ was varied according to alternation of Air/$C_3H_8$ mixing ratio and volume content. The compound layer formed from nitrocarburising was composed of ${\varepsilon}-Fe_{2-3}$(C, N) and ${\gamma}^{\prime}-Fe_4$(C, N). According as Air/$C_3H_8$ mixing ratio increased, the superficial content of ${\gamma}^{\prime}-Fe_4$(C, N) within the compound layer was increased, at the same time the growth rate of compound layer and porous layer was increased. In the case of alloy steel at the fixed gas composition, the growth rate of compound layer and porous layer was worse than carbon steel and compound layer phase composition structure primarily consisted of E phase. As the carbon content of materials was increasing in the given gas atmospheres, the growth rate of compound layer and porous layer was increased and the superficial content of ${\varepsilon}-Fe_{2-3}$(C, N) within the compound layer was increased.

  • PDF