• Title/Summary/Keyword: agrobacterium tumefaciens

Search Result 366, Processing Time 0.024 seconds

Herbicide Resistant Cabbage (Brassica oleracea ssp. capitata) Plants by Agrobacterium-mediated Transformation

  • Lee, Yeon-Hee;Lee, Seung-Bum;Suh, Suk-Chul;Byun, Myung-Ok;Kim, Ho-Il
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Transgenic cabbage (Brassica oleracea ssp. capitata) plants resistant to the commercial herbicide Bast $a^{R}$ were obtained by Agrobacterium tumefaciens - mediated transformation. Hypocotyl segments of in vitro grown plants were infected with Agrobacterium tumefaciens LBA 4404 harboring plasmid pMOG6-Bar which contains hpt and bar genes. Explants were cultured on callus induction medium (MS basal medium + 1 mg/L NAA + 2 mg/L BA + 2 mg/L AgN $O_3$+ 100 mg/L carbenicillin + 250 mg/L cefotaxime) supplemented with 15 mg/L hygromycin. Hygromycin resistant calluses were transferred to shoot regeneration medium (MS basal medium + 0.1 mg/L NAA + 2 mg/L BA + 3% sucrose + 2 mg/L AgN $O_3$+ 15 mg/L hygromycin + 250 mg/L cefotaxime + 100 mg/L carbenicillin). In order to induce roots, elongated shoots were placed on the MS medium without plant growth regulators and hygromycin. Southern blot analysis of several putative transgenic plants indicated that one to five intact copies of Apt and bar genes were incorporated into the genome. Expression of bar gene was confirmed by Northern blot analysis and by herbicide resistant phenotype. Seed progeny from self-pollinated transformants expressed the herbicide resistance and showed Mendelian segregation of the introduced gene.e.

  • PDF

Antifungal Gene (Rs-AFP) Introduction into Rehmannia glutinosa and Gene Expression Mediated by Agrobacterium tumefaciens

  • Lee, Youn-Su;Lim, Jung-Dae;Seong, Eun-Soo;Chae, Young-Am;Yu, Chang-Yeon
    • The Plant Pathology Journal
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • Rehmannia glutinosa is one of the most important medicinal crops in Korea. However, various plant pathogens, including Fusatium spp., cause great damage on R. glutinosa and result in enormous economic losses. This study was conducted to breed Fusarium-resistant plants by using Agrobacterium tumefaciences and AFP (anti-fungal protein) gene. The plant material used was a native accession of R. glutinosa. The PCR analysis was conducted to verify transgenicity. Based on the PCR analysis, nptII band was observed in transgenic plant genome. Southern blot and AFP protein analyses also showed the expression of this gene in transgenic plants. Expression of AFP in transgenic plants offers the possibility of developing resistance to fungal infection.

Higher Plant Vector Systems (식물 백터 시스템)

  • 최인성;홍주봉
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.51-62
    • /
    • 1987
  • Higher plant transformation vector systems are mainly developed based on the natural biosystems which infecting higher plants. Two major groups attracting much of the research are Cauliflower mosaic virus and Agrobacterium tumefaciens. Cauliflower mosaic virus has a double stranded genome, and a portion of the genome can be substituted for a foreign DNA segment without loosing the ability of infection. A. tumefaciens carries a large plasmid. Ti plasmid whose portion can be substitute and trasferred into the plant chromosome.

  • PDF