• Title/Summary/Keyword: agriculture reservoir

Search Result 201, Processing Time 0.027 seconds

Assessment of the Potential Impact of Climate Change on the Drought in Agricultural Reservoirs under SSP Scenarios (SSP 시나리오를 고려한 농업용 저수지의 이수측면 잠재영향평가)

  • Kim, Siho;Jang, Min-Won;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.35-52
    • /
    • 2024
  • This study conducted an assessment of potential impacts on the drought in agricultural reservoirs using the recently proposed SSP (Shared Socioeconomic Pathways) scenarios by IPCC (Intergovernmental Panel on Climate Change). This study assesses the potential impact of climate change on agricultural water resources and infrastructure vulnerability within Gyeongsangnam-do, focusing on 15 agricultural reservoirs. The assessment was based on the KRC (Korea Rural Community Corporation) 1st vulnerability assessment methodology using RCP scenarios for 2021. However, there are limitations due to the necessity for climate impact assessments based on the latest climate information and the uncertainties associated with using a single scenario from national standard scenarios. Therefore, we applied the 13 GCM (General Circulation Model) outputs based on the newly introduced SSP scenarios. Furthermore, due to difficulties in data acquisiton, we reassessed potential impacts by redistributing weights for proxy variables. As a main result, with lower future potential impacts observed in areas with higher precipitation along the southern coast. Overall, the potential impacts increased for all reservoirs as we moved into the future, maintaining their relative rankings, yet showing no significant variability in the far future. Although the overall pattern of potential impacts aligns with previous evaluations, reevaluation under similar conditions with different spatial resolutions emphasizes the critical role of meteorological data spatial resolution in assessments. The results of this study are expected to improve the credibility and accuracy formulation of vulnerability employing more scientific predictions.

Correlation-Analysis between Characteristic Factors of Watersheds and Peak flows in the Irrigation Reservoirs (농업용(農業用) 저수지(貯水池)의 유역(流域) 특성인자(特性因子)와 첨두유량(尖頭流量)과의 상관분석(相關分析))

  • Suh, Seung Duk;Song, Yi Ho;Kim, Hoal Gon
    • Current Research on Agriculture and Life Sciences
    • /
    • v.10
    • /
    • pp.35-40
    • /
    • 1992
  • The purpose of this study is to develop regression equations between peak flow and physical characteristic factors of watersheds. 112 irrigation reservoirs located in South Korea which are equal or larger than 200 has. in the irrigation area, are used in the analysis of this study. The results obtained from this study are as follows. 1. The results of correlation analysis of the relationships among the characteristic factors of the watersheds have been derived high significances. 2. Relationship between the peak flow and the simple correlation analysis of physical characteristic factors of the watersheds has been derived low significance. 3. The result of the multiple regression analysis between the peak flow and four physical characteristic factors of watershed such as watershed area, main stream length, average slope of main stream and elevation of reservoir are shown as the equation ; $Q_{100}=66.43A^{0.869}L^{-0.536}S^{0.456}Hs^{-0.122}$.(r=0.838)

  • PDF

A Estimation Study on Water Integration Management Model using Water-Energy-Food-Carbon Nexus - Focused on Yeongsan River - (물-에너지-식량-탄소 넥서스를 이용한 통합물관리 모델 평가 연구 - 영산강 수계를 중심으로 -)

  • Na, Ra;Park, Jin-hyeon;Joo, Donghyuk;Kim, Hayoung;Yoo, Seung-Hwan;Oh, Chang-Jo;Lee, Sang-hyun;Oh, Bu-Yeong;Hur, Seung-oh
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.1
    • /
    • pp.37-49
    • /
    • 2023
  • Active attention and effort are needed to develop an integrated water management system in response to climate change. In this study, it proposed models for cross-use of agricultural water and river maintenance water using sewage treatment water as an integrated water management system for the Yeongsan River. The impact of the integrated water management models was assessed by applying the concept of Nexus, which is being presented worldwide for sustainable resource management. The target year was set for 2030 and quantitatively analyzed water, energy, land use and carbon emissions and resource availability index by integrated water management models was calculated by applying maximum usable amount by resource. An integrated water management system evaluation model using the Nexus concept developed in this study can play a role that can be viewed in a variety of ways: security and environmental impact assessment of other resources. The results of this research will be used as a foundation for the field of in the establishment of a policy decision support system to evaluate various security policies, as we analyzed changes in other factors according to changes in individual components, taking into account the associations between water, energy, food, and carbon resources. In future studies, additional sub-models need to be built that can be applied flexibly to changes in the future timing of the inter-resource relationship components.

Nonpoint Source Analysis for the Watershed of Imha Reservoir (임하댐 유역에 대한 비점오염원 해석)

  • Han, Kun-Yeun;Park, Kyung-Ok;Yoon, Young-Sam;Kim, Dong-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.933-936
    • /
    • 2006
  • 비점오염원은 특정한 시설이나 장소를 나타내기 보다는 농지에 살포된 비료 및 농약, 대기오염물질 강하물, 축사에서의 유출물, 도로상에 쌓인 교통오염물질, 하수관거에서 유출되는 하수 등으로 강우시 빗물과 함께 유출되는 오염물질로 정의되며, 비점오염물질을 발생시키는 곳은 비점오염원으로 규정하고 있다. 비점오염원은 경제활동수준이 증가하고 토지이용이 고도화될수록 수질에 미치는 영향이 커지게 되며, 점오염원의 부하가 줄어들수록 비점오염원에 의한 부하비율은 증가하게 된다. 따라서 비점오염에 대한 체계적인 관리 없이 하천이나 호소 수질을 개선하는 데는 그 한계가 있다. 또한 체계적인 관리 이전에 적절한 비점오염원의 해석이 무엇보다도 중요하므로 본 연구에서는 적절한 비점오염원 모형 검토를 선행하였다. 가용 자료의 존재 여부 및 해석 시 사용하는 방정식 등을 고려하여 선정한 모형은 USDA-ARS(US Department of Agriculture-the Agricultural Research Service)에서 개발된 SWAT 모형으로 본 연구에 이용되었다. SWAT 모형에 이용되는 자료는 크게 유역자료, 강우자료, 기상자료, 검정에 이용되는 유량 및 오염물질 농도로 분류될 수 있다. 본 모형에 이용되는 광범위한 자료를 수집하여 해석을 수행하였다. 비점오염원 해석의 검보정을 위해 점오염원의 영향이 크지 않은 소유역 유출지점을 선정하여 해석하여 비교적 합리적인 결과를 도출하였다. 차후 연구에서 보다 합리적인 해석을 위해 데이터베이스의 재검토가 절실한 것으로 판단된다.

  • PDF

Development of Crop Information System using Satellite Images

  • Kim, Seong-Joon;Kwon, Hyung-Joong;Park, Geun-Ae;Lee, Mi-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.7
    • /
    • pp.3-9
    • /
    • 2005
  • A computer system for crop information was developed using Visual Basic and ArcGIS VBA. The system is operated on ArcGIS 8.3 with Microsoft Access MDB. Landsat +ETM, KOMPSAT-1 EOC, ASTER VNIR and IKONOS panchromatic (Pan) and multi-spectral (MIS) images were included in the system to extract agricultural land use items identifiable at various spatial resolutions of images. Agriculture related data inventories using crop cover information such as texture and average pixel value of each band based on crop cultivation calendar were designed and implemented. Three IKONOS images were loaded in the system to show crop cover characteristics such as rice, pear, grape, red pepper, garlic, and surface water cover of reservoir with field surveys. GIS layers such as DEM (Digital Elevation Model), stream, road, soil, land use and administration boundary were prepared to understand the related characteristics and identify the location easily.

Behavior of Failure for Embankment and Spillway Transitional Zone of Agriculture Reservoirs due to Overtopping (농업용 저수지 월류시 제체와 여수토 접속부의 붕괴거동)

  • Noh, Jae Jin;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • In this study, an experiment with large-scale model was performed according to raising the embankment in order to investigate the behavior of failure for embankment and spillway transitional zone due to overtopping. The pore water pressure, earth pressure, settlement and failure pattern by a rapid drawdown and overtopping were compared and analyzed. The pore water pressure and earth pressure at spillway transitional zone by overtopping increased a rapidly with the expansion of seepage erosion, but the crest showed a smally change due to effect of the inclined core type. And it is considered an useful data that can accurately estimate the possibility of failure of the reservoirs. A settlement at overtopping decreased a rapidly due to failure of crest. The relative settlement difference due to change of the water level at the upstream and downstream slope cause increase largely crack of crest. The behavior of failure by overtopping was gradually enlarged towards reservoirs crest from the bottom of the spillway transition zone, the inclined core after the raising the embankment was influenced significantly to prevent the seepage erosion.

Life Cycle-Based Host Range Analysis for Tomato Spotted Wilt Virus in Korea

  • Kil, Eui-Joon;Chung, Young-Jae;Choi, Hong-Soo;Lee, Sukchan;Kim, Chang-Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.67-75
    • /
    • 2020
  • Tomato spotted wilt virus (TSWV) is one of the plant viruses transmitted by thrips and causes severe economic damage to various crops. From 2008 to 2011, to identify natural host species of TSWV in South Korea, weeds and crops were collected from 5 regions (Seosan, Yesan, Yeonggwang, Naju, and Suncheon) where TSWV occurred and were identified as 1,104 samples that belong to 144 species from 40 families. According to reverse transcription-polymerase chain reaction, TSWV was detected from 73 samples from 23 crop species, 5 of which belonged to family Solanaceae. Additionally, 42 weed species were confirmed as natural hosts of TSWV with three different life cycles, indicating that these weed species could play an important role as virus reservoirs during no cultivation periods of crops. This study provides up-to-date comprehensive information for TSWV natural hosts in South Korea.

Optimizing Rules for Releasing Environmental Water in Enlarged Agricultural Reservoirs (둑높이기 농업용저수지의 환경용수 방류기준 설정)

  • Yoo, Seung-Hwan;Lee, Sang-Hyun;Choi, Jin-Yong;Park, Tae-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.17-24
    • /
    • 2012
  • The main purposes of the agricultural reservoir enlargement (ARE) project are to secure water supply reliability (WSR) for agriculture and to release environmental water during dry seasons. In this study, an operational rule that will simultaneously satisfy both the above issues was developed. Initial amount of water storage at the beginning of non-irrigation season (1st October) was divided into 3 stages, and the target level of water storage at the beginning of irrigation seasons (1st April) was set up. Required operational curves and release amounts were estimated based on the stages and target water levels. To evaluate the applicability of this rule, the amount of water released for environmental purposes and WSRs were analyzed for three reservoirs (Unam, Jangchi and Topjeong). The ratio between annual amount of release and additional amount of water storage were 1.6, 1.85, and 4.1 for the Unam, Jangchi, Tapjeong reservoirs, respectively. Also, the WSRs of all reservoirs were found to become higher than when the design standard was applied. Therefore, it is considered that the proposed rule is more suitable for the enlarged agricultural reservoirs operation as it satisfies the WSRs while securing the environmental water release.

Flood Control Stability of Old Agriculture Reservoir (노후된 소규모 농업용저수지의 치수 안정성 검토)

  • Yang, Jun Seok;Ahn, Seoung Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.433-433
    • /
    • 2017
  • 본 연구에서는 노후된 소규모 농업용저수지의 홍수에 대한 안전성이 부족하여 최근들어 노후된 소규모 농업용 저수지를 재설계하여 치수능력을 보강하고 있다. 이러한 노후 소규모 농업용 저수지의 홍수량을 재산정하기 위해 강우량을 수집하여 확률강우량을 재산정하고 빈도별 홍수량을 산정하였다. 산정된 빈도별 확률홍수량을 이용하여 현재의 치수적 안정성을 검토하고 현재기준에 적합한 저수지의 치수적 안정성을 갖추기 위해 댐을 증고하는 방안에 대해 검토하였다. 본 연구에서 저수지의 안정성을 검토한 결과 심천저수지의 홍수위는 200년 빈도에서 EL. 124.38m, 300년 빈도에서 EL. 124.43m 500년 빈도에서 EL. 124.48m로 현재 댐마루고 EL. 125.60m와 비교시 월류는 하지 않으나 댐설계기준(2011,국토해양부)에서 제시된 식에 따른 여유고와 비교한 결과 현재 상태에서는 여유고가 부족하여 증고가 필요한 것으로 분석되었다. 따라서 심천저수지의 현재 홍수량에 대한 검토를 위해 100년, 80년, 50년 빈도의 저수지 홍수추적결과 심천저수지의 여유고는 100년 빈도에서 0.028m부족, 80년 빈도에서 0.007m부족, 50년 빈도에서 기준여유고를 0.046m 만족하여 현재 상태에서는 50년 빈도에서 안정한 것으로 검토되었다.

  • PDF

Analysis of Impact of Climate Change on River Flows in an Agricultural Watershed Using a Semi-distributed Watershed Model STREAM (준분포형 유역모델 STREAM을 이용한 기후변화가 농업유역의 하천유량에 미치는 영향 분석)

  • Jeong, Euisang;Cho, Hong-Lae
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.2
    • /
    • pp.131-144
    • /
    • 2019
  • Climate Change affects the hydrological cycle in agricultural watersheds through rising air temperature and changing rainfall patterns. Agricultural watersheds in Korea are characterized by extensive paddy fields and intensive water use, a resource that is under stress from the changing climate. This study analyzed the effects of climate change on river flows for Geum Cheon and Eun-San Choen watershed using STREAM, a semi-distributed watershed model. In order to evaluate the performance and improve the reliability of the model, calibration and validation of the model was done for one flow observation point and three reservoir water storage ratio points. Climate change scenarios were based on RCP data provided by the Korea Meteorological Administration (KMA) and bias corrections were done using the Quantile Mapping method to minimize the uncertainties in the results produced by the climate model to the local scale. Because of water mass-balance, evapotranspiration tended to increase steadily with an increase in air temperature, while the increase in RCP 8.5 scenario resulted in higher RCP 4.5 scenario. The increase in evapotranspiration led to a decrease in the river flow, particularly the decrease in the surface runoff. In the paddy agricultural watershed, irrigation water demand is expected to increase despite an increase in rainfall owing to the high evapotranspiration rates occasioned by climate change.