• 제목/요약/키워드: agricultural wheel

검색결과 127건 처리시간 0.022초

APPLICATION OF DISTINCT ELEMENT METHOD TO SIMULATE MACHINE-SOIL INTERACTIONS

  • Oida, A.;Momozu, M.;Ibuki, T.;Nakashima, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.II
    • /
    • pp.117-123
    • /
    • 2000
  • Using the modified DEM (Discrete Element Method), which we proposed in order to improve the accuracy of the simulation, soil behavior and reaction by lugs of rotating wheel and a soil cutting process by a high speed blade were calculated and compared with experimental data. The DEM is one of computational mechanics, where the object body is supposed as an assembly of small particles called elements and not a continuum as in the case of FEM. We can easily treat some discrete phenomena such as cracking, separating and sliding by the DEM. We had to modify the original mechanical model, which induced too free movement of elements, adding a tension spring, which would display the role of soil adhesion. The results of DEM simulations were successful from both the soil behavior and reaction points of view.

  • PDF

아스팔트 鋪裝道路의 確率論的 表層設計 (Pobabilistic Design of Asphalt Pavement Surface Courae)

  • 김광우;연규석
    • 한국농공학회지
    • /
    • 제34권1호
    • /
    • pp.66-77
    • /
    • 1992
  • A prototype probabilistic approach to thickness design for asphalt pavement surface course was developed using first-order second moment probability model. The tensile strain (load effect) developing at the bottom of surface layer due to the wheel load and the critical strain (resistance) of asphalt concrete were used as random variables for pavement reliability analysis. Based on the parameters for load effect and resistance data collected from reference and field, simulated data were generated by Monte Carlo method for reliability evaluation of the pavement for a typical rural highway. Thickness of pavement surface course was defined in terms of target reliability of the pavement, growth factor of traffic, design life of pavement and resistance of the asphalt concrete to be placed on the pavement. According to these rationales, prototype thickness design chrats were sugested through example studies. From these, similar design charts can be developed for many pavements if appropriate data and target reliability are determined.

  • PDF

Tractor Performance Instrumentation System

  • Wan Ismail, Wan Ishak;Yahya, Azmi;Bardaie, Mohd. Zohadie
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.569-581
    • /
    • 1996
  • A microcomputer -based data acquistion system was designed and developed at Michigan State University , USA to conduct field data studies. The system designed for the research carried out used an Apple IIe microcomputer for collecting data on-board the tractor. An AII3 Analog to Digital (A/D_ convertor was chosen to interface each analog signal to the microcomputer. A commercially available Dj TPM II was employed to display information such as an engine speed, ground speed, percent drive wheel slip , distance travelled and area covered per hour. The frequency output from the radar unit was channeled through a frequency to voltage (F/V) convertor , so that AII3 Analog to Digital (A/D) convertor could read it. The fuel consumption was measured using on EMCO pdp-1 fuel flow meter attached to the engine fuel line. The draft of the tillage and other drag equipment was determined using strain gages attached to the drawbar of the tractor. The system was developed to collect the draft and fuel requirements for various farm equipment different kind of soils.

  • PDF

농작업 부하 계측을 위한 80kW급 계측 트랙터 개발 및 검증 (Development of the 80-kW Test Tractor for Load Measurement of Agricultural Operations)

  • 조승제;김정길;박진선;김연수;이동근
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.46-53
    • /
    • 2022
  • RIn this study, a test tractor that could measure various types of agricultural operational loads was developed, and its performance was verified. This tractor could be used to measure the load generated during agricultural work and convert the related data into a database. A test tractor was developed using an 80-kW-rated load tractor, and it could measure various types of field test data, such as engine torque and rpm, wheel torque, PTO(power take-off) torque, hexometer, IMU/INS sensor, steering angle sensor, hydraulic pressure, and flow sensor data. To verify the developed test tractor, a verification test using an agriculture rotavator was performed. The test conditions were L1, L2, and L3 based on the tractor's main and sub-transmission stages, and stages 1 and 2 were selected as the PTO. In a comparison of the analyzed test data, similar tendencies in the test results of this research and other research (Kim's research) were seen. Through this, the developed test tractor was verified. In the future, we plan to conduct research on the tractor developed in this study using various attached working machines.

인체모델을 이용한 농작업자의 밀기 작업시 요추부 생체 역학적 평가 (Bio-mechanical Analysis on the Lower Back using Human Model during Pushing the Manual Vehicles)

  • 임대섭;이경숙;최안렬;김영진;문정환
    • Journal of Biosystems Engineering
    • /
    • 제34권4호
    • /
    • pp.286-294
    • /
    • 2009
  • A high prevalence of protected horticulture farmer's work-related musculo-skeletal disorders (MSDs) have been reported in precedent studies. One of the tasks required ergonomic intervention to reduce the musculo-skeletal risks is the task of product transporting. The purpose of this study is to evaluate quantitatively the spinal load of operator using manual vehicles to predict and prevent musculo-skeletal risks. Spinal load in operators using 4 kinds of manual vehicle were analyzed. Before evaluating spinal load on operator using the manual vehicles by bio-mechanical approach, it is needed to validate human model. In this study, ADAMS LifeMOD human model shows satisfactory results, comparing with already validated model's results or measured results. While Operators pushed the manual vehicles(wheelbarrow, Trolley, 2 wheel cart, and 4 wheel cart) contained loads that were 0 N and 800 N, their spinal loads(compression force, shear force) were evaluated. The compression force demonstrated under the NIOSH action limits - 3410N - for all 4 manual vehicle's operators(McGill 1997; Marras 2000). However, the lateral shear force demonstrated over the University of Waterloo - 500N - for all 3 manual vehicle's operators except 4Wheel cart (Yingline and McGill, 1999). Therefore, operators have risks in prevalence of the musculo-skeletal disorders due to shear force. The findings of this study suggest that it need to be determine the spinal load, especially lateral shear force in designing the manual vehicles in the future.

트랙터의 포장성능평가(圃場性能評價)를 위한 자료수집처리(資料蒐集處理) 시스템의 개발(開發) (Data Acquisition and Processing System for Tractors Field Performance)

  • 류관희;류영선;강은;박보순;장세권
    • Journal of Biosystems Engineering
    • /
    • 제10권2호
    • /
    • pp.19-26
    • /
    • 1985
  • This study was carried out to develop a versatile data acquisition/processing system for overall tractor performance utilizing a NEC PC-8001 microcomputer. The data acquisition system measures drawbar pull and power, wheel torque and axle power, ground speed, wheel slip, fuel flow, and engine speed. The system stores hexadecimal data for these variables in memory. Upon completion of each test run, all hexadecimal data stored in memory are recorded on floppy disc. The data processing system reads in the data collected on floppy disc and interprete them using several graphical and statistical techniques. The system uses the same microcomputer and a dot-matrix printer. The data acquisition system has been installed on a GOLDSTAR 500 tractor (2WD, 50 ps). A field study has shown that tractor performance data can be quickly and easily collected. It also appeared that the data processing system can be used to efficiently analyze the collected data. The data acquisition system has some troublesome in mounting and handling on tractor since it uses a general-purpose computer consisting of several components.

  • PDF

수도포장(水稻圃場)에서의 동력경운기(動力耕耘機) 주행성(走行性)에 관(関) 연구(硏究) (A Study on the Mobility of Power Tiller in Wetland Rice Field)

  • 이규승;이용국;이중용;박승제;김상헌
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.8-18
    • /
    • 1984
  • To investigate the most important factors affecting the mobility of power tiller and to find the method which can be used for predicting the mobility of power tiller in soft paddy field, a series of field experiment was performed with two models of power tiller (8ps and 6ps diesel). From the results obtained throughout field experiment, the following conclusions were derived. 1. The wheel sinkage of power tiller during both traveling and field operations, which mainly influence the mobility, could be predicted from both plate ($50{\times}100mm$) sinkage and soil cone index (30-degree cone with 2 and $6cm^2$ base area). 2. Prediction of wheel sinkage from the rectangular plate sinkage was found to be more suitable compared with the cone index. 3. The upper limit of rectangular plate sinkage was found as 15 centimeter for operation of power tiller in muddy field which is equivalent of $1kg/cm^2$ of $2cm^2$ cone index value.

  • PDF

Analysis of the axle load of an agricultural tractor during plow tillage and harrowing

  • Hong, Soon-Jung;Park, Seung-Je;Kim, Wan-Soo;Kim, Yong-Joo;Park, Seong-un
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.665-669
    • /
    • 2016
  • Analysis of the load on the tractor during field operations is critical for the optimal design of the tractor. The purpose of this study was to do a load analysis of an agricultural tractor during plowing and harrowing. First, a load measurement system was developed and installed in a 71 kW agricultural tractor. Strain-gauges with a telemetry system were installed in the shaft located between the axles and the wheels, and used to measure the torque of the four driving axles. Second, field experiments were conducted for two types of field operations (plowing, harrowing), each at two gear levels (M2, M3). Third, load analysis was conducted according to field operation and gear level. At M2 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were 13,141 Nm; 4,381 Nm; and 6,971 Nm (${\pm}397.8Nm$, respectively). For harrowing, at M2 gear selection, torque values were, 14,504 Nm; 1,963 Nm; and 6,774 Nm (${\pm}459.4Nm$, respectively). At M3 gear selection for plowing, the maximum, minimum, and average (S. D.) torque values were,17,098 Nm; 6,275 Nm; and 8,509 Nm (${\pm}462.4Nm$, respectively). For harrowing at M3 gear selection, maximum, minimum, and average (S. D.) torque values were, 20,266 Nm; 2,745 Nm; and 9,968 Nm (${\pm}493.2$). The working speed of the tractor increased by approximately 143% when shifted from M2 (7.2 km/h) to M3 (10.3 km/h); while during plow tillage and harrowing, the load of the tractor increased approximately 1.2 times and 1.5 times, respectively.

부추 수확기 개발을 위한 예취 및 이송특성 구명 (Cutting and Conveying Characteristics for Development of Chinese Leek Harvester)

  • 전현종;김상헌;홍종태;최용
    • Journal of Biosystems Engineering
    • /
    • 제30권4호
    • /
    • pp.220-228
    • /
    • 2005
  • This study was conducted to investigate the main factors that contain a rotating velocity ratio between wheel and conveyor belt, a tilt angle of conveyor belt and a rotating velocity of a dick cutter for mechanization of Chinese leek harvest. In the survey on the cultivation of Chinese leek, row spacing of 350 m and cutting height of 10 mm from the ground were set up for field tests. Test equipment was designed to cut, pick up and convey Chinese leek one row by one row. From the results of material tests, pick-up height of conveyor belt was set up at $60\~90m$ from the bottom, and the strain and stress at rupture of Chinese leek was 0.487 m/m and 0.01078 MPa. An elastic coefficient of the rubber (Neoprene) of conveyor belts was 1.1077 under the strain of 0.3 nym. from the results of field tests, the tilt angle of conveyor belt was the range of $25^{\circ}\~30^{\circ}$ under consideration far space of container, the velocity ratio between vehicle and conveying belt was 1 to 2.4~1.7 at 0.1~0.3 m/s of vehicle, and optimum rotating velocity of the disk cutter was 34.8 m/s or more under consideration for soil friction.

Analysis of Static Lateral Stability Using Mathematical Simulations for 3-Axis Tractor-Baler System

  • Hong, Sungha;Lee, Kyouseung;Kang, Daein;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • 제42권2호
    • /
    • pp.86-97
    • /
    • 2017
  • Purpose: This study aims to evaluate the applicability of a tractor-baler system equipped with a newly developed round baler by conducting stability analyses via static-state mathematical simulations and verification experiments for the tractor equipped with a loader. Methods: The centers of gravity of the tractor and baler were calculated to analyze the transverse overturning of the system. This overturning of the system was analyzed by applying mathematical equations presented in previous research and comparing the results with those obtained by the newly developed mathematical simulation. For the case of the tractor equipped with a loader, mathematical simulation results and experimental values from verification experiments were compared and verified. Results: The center of gravity of the system became lower after the baler was attached to the tractor and the angle of transverse overturning of the system steadily increased or decreased as the deflection angle increased or decreased between $0^{\circ}$ and $180^{\circ}$ on the same gradient. In the results of the simulations performed by applying mathematical equations from previous research, right transverse overturning occurred when the tilt angle was at least $19.5^{\circ}$ and the range of deflection angles was from $82^{\circ}$ to $262^{\circ}$ in counter clockwise. Additionally, left transverse overturning also occurred at tilt angles of at least $19.5^{\circ}$ and the range of deflection angles was from $259^{\circ}$ to $79^{\circ}$ in counter clockwise. Under the $0^{\circ}$ deflection angle condition, in simulations of the tractor equipped with a loader, transverse overturning occurred at $17.9^{\circ}$, which is a 2.3% change from the results of the verification experiment ($17.5^{\circ}$). The simulations applied the center of gravity and the correlations between the tilt angles, formed by individual wheel ground contact points excluding wheel radius and hinge point height, which cannot be easily measured, for the convenient use of mathematical equations. The results indicated that both left and right transverse overturning occurred at $19.5^{\circ}$. Conclusions: The transverse overturning stability evaluation of the system, conducted via mathematical equation modeling, was stable enough to replace the mathematical equations proposed by previous researchers. The verification experiments and their results indicated that the system is workable at $12^{\circ}$, which is the tolerance limit for agricultural machines on the sloped lands in South Korea, and $15^{\circ}$, which is the tolerance limit for agricultural machines on the sloped grasslands of hay in Japan.