• Title/Summary/Keyword: agricultural watershed

Search Result 906, Processing Time 0.024 seconds

Characteristics of Pollutant Loading in Namdae-cheon Watershed

  • Choi, Jin-Kyu;Son, Jae-Gwon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.49-56
    • /
    • 2003
  • Nonpoint source pollutant loading from watershed may cause a problem to the water quality of the reservoir and stream. The characteristics of stream flow and water quality were monitored to investigate the runoff loading of the Namdae-cheon watershed from May in 1999 to October in 2003. Stage-discharge rating curve at the stream gauging site was established, and annual stream runoff of the study watershed was estimated as 499.4∼1,330.8mm during four years. The concentrations of total-nitrogen and total-phosphorus of stream water quality ranged from 0.76 to 6.95mg/L and from 0.0010 to 0.2276 mg/L, respectively, where T-N was generally higher than the water quality standard 1.0 mg/L for agricultural water use. The loads by unit generation of pollutant mass with respect to population, livestock, land use in this watershed were calculated. The runoff pollutant loadings by concentrations of total-N and total-P were estimated during study period, where the annual runoff loading of total-P was much less than the load by pollutant mass unit generation. The relations between stream discharge and water quality were analysed, and there was a high correlation for total-N but low for total-P. These results will be used to develop the monitoring techniques and water quality management system of agricultural watershed.

Analysis of Flow-Weighted Mean Concentration(FWMC) Characteristics from Rural Watersheds (농업 및 산림유역의 강우유출수 유량가중평균농도 분석)

  • Shin, Min-Hwan;Shin, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Stream flow and water quality were measured and analyzed with respect to flow-weighted mean concentrations (FWMCs) of 21 rainfall events from a forested watershed (Forest Research Watershed: FRW) and two mixed watersheds of agriculture and forest (YuPo-Ri Watershed: YPW and WolGog-ri Watershed: WGW) located in the middle of the North Han River basin. The monitoring of each watershed was one year and conducted between 2004 and 2006. YPW showed more intensive agricultural practices than WGW where traditional practices were common. The average of the 21 FWMCs were in the order of YPF>WGW>FRW and were significantly different from each other at the level of 0.05. It was shown that the land use with intensive agricultural practices produced and discharged more NPS pollutants than that with traditional practices and forest. Specially, SS concentrations from the mixed watersheds were significantly higher than those from FRW. Influencing factors on runoff were analyzed rainfall and watershed area. And rainfall intensity was greater impact on runoff than daily rainfall. Measured water quality indices were shown positive correlations among them in general. However, no significant correlation was shown between COD and nutrients(T-N and T-P).

Changes of Stream Water Quality and Loads of N and P from the Agricultural Watershed of the Chooryung-chon Tributary of the Sumjin River Basin

  • Cho, Jae-Young;Han, Kang-Wan;Choi, Jin-Kyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.370-374
    • /
    • 2000
  • At this study, the monitoring network of water quality was established in the agricultural watershed an area 14,960 ha of the central southwest of Korea. Loads of nitrogen and phosphorus by agricultural land use were quantified bases on total amounts of stream flow. The land were used as a lowland paddy, an upland and a forest about 12.14 % (1,815 ha), 5.17 % (773 ha) and 80.31 % (12,015 ha) of the area, respectively. For six months, from May 1 to October 31, 1999, the total precipitation was 970 mm and the total amount of stream flow was $80,281,000\;m^3$. In the load of agricultural non-point sources relevant to land use, total-N was 138,413 kg, then ammonia-N 13,362 kg, nitrate-N 124,629 kg, and total-P 157 kg. The loss of nutrient which from application of chemical fertilizer were 38.0% in nitrogen and 0.1% in phosphorus to input chemical fertilizer in the watershed.

  • PDF

Assessment of Cell Based Pollutant Loadings in an Intensive Agricultural Watershed (농업 소유역 격자단위 오염부하량 평가)

  • Kang, Moon-Seong;Cho, Jae-Pil;Chun, Jong-An;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.87-94
    • /
    • 2009
  • The objectives of this paper were to estimate cell based pollutant loadings for total maximum daily load (TMDL) programs and to evaluate the applicability of the agricultural nonpoint source (AGNPS) model for an intensive agricultural watershed in Korea. The model was calibrated and validated at a watershed of 384.8 ha of drainage area using the observed data from 1996 through 2000 in terms of runoff, suspended solid, total nitrogen, and total phosphorus on a hourly basis. Analysis of spatial variations of pollutant loadings for rainfall frequencies of various intensities and durations were conducted. In addition, the validated model was applied to estimated the TMDL removal efficiency for best management practices (BMPs) scenarios which were selected by taking into account the pollutant characteristics of the study watershed. The model can help to understand the problems and to find solutions through landuse changes and BMPs. Thus, the method used for this study was able to identify TMDL quantitatively as well as qualitatively for various sources pollution that are spatially dispersed. Also it provides an assessment of the impact of BMPs on the water bodies studied, allowing the TMDL programs to be complemented more effectively.

Real-time Hydrologic Monitoring at Agricultural Small Watershed (실시간 계측기기를 이용한 농업소유역의 수문모니터링)

  • Seong, Choung-Hyun;Park, Seung-Woo;Kim, Sang-Min;Choi, Ja-Yoon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.253-256
    • /
    • 2002
  • A hydrologic gauging network include a real-time measuring equipment was established within the Balhan watershed. Rainfall, stream water level, flow velocities were monitored at the six gauging stations. For stream flow gauging stations, the stage-discharge relationships were developed. The flow rate of the Balan watershed was 83.60% in 2001 and 48.79% in 2002.

  • PDF

Evaluation of Organic Matter Flow in Rural Watersheds (농촌유역에서의 유기물 흐름의 평가-충북 청원군 가덕면 유역을 대상으로)

  • 오광영;김진수
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.676-681
    • /
    • 1999
  • The organic matter flow in rural watershed in Chongwon-gun , Chungbuk, was evaluated, The study watershed is about 67$\textrm{km}^2$ in area and its population was 7,000 in 1996. The amount of inflow in the study area exceeds the amount of outflow by 534kg/ha , and the livestock feed account for 90 percent of the amount of inflow. The loading of organic matter by livestock waste amounts to 51 percent of total loading to agricultural land and the enviornment. The increase in recycling of livestock waste is essential for the management of orgainc matter in the rural watershed.

  • PDF

L-THIA/NPS to Assess the Impacts of Urbanization on Estimated Runoff and NPS Pollution (도시화에 따른 유출과 비점원 오염 영향을 평가하기 위한 L-THIA/NPS)

  • Kyoung-Jae Lim;Bernard A. Engel;Young-Sug Kim;Joong-Dae Choi;Ki-Sung Kim
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.78-88
    • /
    • 2003
  • The land use changes from non-urban areas to urban areas lead to the increased impervious areas, consequently increased direct runoff and higher peak runoff. Urban areas have also been recognized as significant sources of Nonpoint Source (NPS) pollution, while agricultural activities have been known as the primary sources of NPS pollution. Many features of the L-THIA/NPS GIS, L-THIA/NPS WWW system have been enhanced to provide easy-to-use system. The L-THIA model was applied to the Little Eagle Creek (LEC) watershed in Indiana to evaluate the accuracy of the model. The L-THIA/NPS GIS estimated yearly direct runoff values match the direct runoff separated from U.S. Geological Survey stream flow data reasonably. The $R^2$ and Nash-Sutcliffe values are 0.67 and 0.60, respectively. The L-THIA estimated runoff volume and total nitrogen loading for each land use classification in the LEC watershed were computed. The estimated runoff volume and total nitrogen loading in the LEC watershed increased by 180% and 270% for the 20 years. Urbanized areas -"Commercial", "High Density Residential", and "Low Density Residential"- of the LEC watershed made up around 68% of the 1991 total land areas, however contributed more than 92% of average annual runoff and 86% of total nitrogen loading. Therefore, it is essential to consider the impacts of land use change on hydrology and water quality in land use planning of urbanizing watershed.nning of urbanizing watershed.

Estimating Peak Runoff from Small Ungauged Watersheds Using SCS TR-20 Model (SCS TR-20 모형을 이용한 미계측 소유역의 홍수유출량 추정)

  • 김철겸;박승우;박창언
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.370-375
    • /
    • 1998
  • The objectives of this study are to evaluate the applicability of SCS TR-20 model for small ungauged watershed, to show the behavior of the model with variation of topography in watershed, and to evaluate the storage effect of paddy field for flood flow. For this purpose, simulated data from the model were compared with the observed flood data at two sites (HS#3, HS#4) in Balan watershed. From the comparison between simulated and observed data, it was found that the model is applicable to this watershed.

  • PDF

Simulation of Hydrological and Sediment Behaviors in the Doam-dam Watershed considering Soil Properties of the Soil Reconditioned Agricultural Fields (객토 농경지의 토양특성을 고려한 도암댐 유역에서의 수문 및 유사 거동 모의)

  • Heo, Sung-Gu;Kim, Jae-Young;Yoo, Dong-Sun;Kim, Ki-Sung;Ahn, Jae-Hun;Yoon, Jong-Suk;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.49-60
    • /
    • 2007
  • The alpine agricultural activities are usually performed at higher and steep areas in nature. Thus, significant amounts of soil erosion are occurring compared with those from other areas. Thus, the soil erosion induced environmental impacts in these areas are getting greater. The Doam watershed is located at alpine areas and it has been well known that the agricultural activities in the watershed are causing accelerated soil erosion and water quality degradations. Many modeling approaches were employed to solve soil erosion and water quality issues. In this study, the Soil and Water Assessment Tool (SWAT) model was utilized to simulate the hydrologic and sediment behaviors in the Doam watershed. In many previous modeling studies, the digital soil map and its corresponding soil properties were used without modification to reflect soil conditioning at many agricultural fields of the Doam watershed. Thus, the soil sample was taken at the agricultural field within the Doam watershed and analyzed for its physical properties. In this study, the digital topsoil properties in the agricultural fields within the Doam watershed were replaced with the soil properties for reconditioned soil analyzed in this study to simulate the impacts of using soil properties for reconditioned soil in hydrologic and sediment modeling at the Doam watershed using the SWAT model. The hydrologic component of the SWAT model was calibrated and validated for measured flow data from 2002 to 2003. The $R^2$ value was 0.79 and the EI value was 0.53 for weekly simulated data. The calibrated model parameters were used for hydrologic component validation and the $R^2$ value was 0.86 and the EI value was 0.74 for weekly data. For sediment comparison, the $R^2$ value was 0.67 and the EI value was 0.59. These statistics improved with the use of soil properties of the reconditioned soil in the field compared with the results obtained without considering soil reconditioning. The simulated sediment amounts with and without considering the soil properties of the reconditioned soil were 284,813 ton and 158,369 ton, respectively. This result indicates that there could be approximately 79% of errors in estimated sediment yield at the Doam watershed, although the model comparison with the measured data gave similar satisfactory statistics with and without considering soil properties from the reconditioned soil.

Estimation of Pollutant Loadings from Agricultural Small Watershed Using the Unit Loading Factor and Water Quality Monitoring (수질 모니터링과 원단위법을 이용한 농업소유역의 오염부하량 추정)

  • 김상민;강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.94-102
    • /
    • 2003
  • A hydrologic and water quality monitoring network were established in the Balkan-reservoir watershed, which has 29.79 $km^2$ in size, to analyze the characteristics of pollutant loading from an agricultural small watershed. Soil type, land use, hydrologic soil group, population and livestock were also surveyed to make clear the pollutant sources and to calculate the pollutant loadings by the unit loading factor method which was proposed by the Ministry of Environment. From the 5-year hydrologic monitoring results, sub-watersheds located in the upstream of the reservoirs showed higher average runoff ratio. The calculated daily pollutant loadings by the unit loading factor method from HP#2 sub-watershed in the downstream of Balkan reservoir, were much greater than observed.