• 제목/요약/키워드: agricultural water district

검색결과 133건 처리시간 0.019초

EPANET을 이용한 농업용 관수로 시스템의 운영 및 유지관리 인자 분석 (Analysis of Operating and Maintenance Parameters for Agricultural Pipeline System Using EPANET)

  • 김남도;김선주;권형중;김필식;박현준
    • 한국농공학회논문집
    • /
    • 제59권4호
    • /
    • pp.17-26
    • /
    • 2017
  • In this study, EPANET model which is using on the pipe network analysis was applied to Haenam irrigation district has provided irrigation water by pipeline system about 1,125ha and then have built pipe network to study area and supply performance evaluation of existing structure was analyzed by SPA (Single Period Analysis) in EPANET. As model results of simulation average ratio of maximum supply quantity/irrigation water requirements(base demand) was analyzed by 2.63. It means also that was analyzed as being capable of ensuring the water supply capacity. It was provided the necessary information for the maintenance facility through analyzed hydraulic behaviors in the pipeline inside such as flow velocities, pressures and hydraulic grade lines. It was satisfied with the allowable design criteria that was compared analyzed results with presented allowable design standards at agricultural production infra improvement project planning and design (Pipeline design standard). In order to analyze efficiency promotions of irrigation water, using Extended Period Simulation it was compared supply quantity with irrigation water requirements while pumps set operating pattern in 24 hours, then efficiency promotions of irrigation water was determined through analyzed oversupply water quantity and occurrence time by branch lines. According to results for oversupply quantity in Haenam district by time and end of branch lines efficiency promotions of irrigation water was suggested from 0.33 % to 37.59 %. To draw reasonable operating rules for water use and through this research, it is expected to be helpful for efficient water use and operational management of agricultural pipeline system to the current agricultural irrigation.

영산강 IV단계 사업지구 내 밭관개 실태조사 (Survey on current Farmer's Irrigation Practice on upland in the Youngsan River Irrigation Project District IV)

  • 윤광식;한국헌;최수명;김진태;이용직
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.287-290
    • /
    • 2003
  • To devise better development plan, survey was conducted about current Farmer's irrigation Practice on upland in the Youngsan River Irrigation Project District IV. Major upland crops are garlic and onion in this region. Currently, upland irrigation is conducted using ground water. It is found that irrigation interval is $2{\sim}3$ day for dry-field rice and $3{\sim}7$ days for other crop, in general. Whole day is required to irrigate for many farmers due to lack of facilities and water source. Farmers have no intention to change staple crops even after completion of Irrigation Project of Youngsan River District IV.

  • PDF

생활하수의 농업용수재이용을 위한 생활하수 오염지구 수질 모니터링 (Water quality monitoring at irrigation districts polluted with wastewater for the wastewater reuse for agriculture)

  • 김상민;박승우;강문성
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.401-404
    • /
    • 2002
  • Two irrigation districts, Maekok and Byungjum 1 which are irrigated with polluted stream flow, and one control district Kichun, that is supplied from a reservoir complying with the water quality standard are selected for water quality monitoring to identify the effects of polluted irrigation on crop yields, environments, and health hazards for farmers. The water quality at Maekok and Byungjum 1 districts are worse than the control district, and continuous water quality monitoring are needed for the wastewater reuse for agriculture.

  • PDF

A Decision Support System for Paddy Rice Irrigation

  • Park, Seung-Woo;Chung, Ha-Woo;Kim, Byeong-Jin;Koo, Jee-Hee
    • Korean Journal of Hydrosciences
    • /
    • 제2권
    • /
    • pp.99-113
    • /
    • 1991
  • Integrated irrigation management system (IIMS) that is incorporated with a microcomputer-based decision support system (DSS) has been developed and applied to paddy rice irrigation systems management. The system hardwares consist of field data acquisition units, data transmission units, central data processing units, and printing and displaying units. Ridld data to be collected include incremental rainfall, streamflow and reservoir water levels, and water levels at several irrigation canal sections within an irrigation sidtricts. The softwares are to process field data, real-time forecasting, irrigation control data, and decision variables from data-base and simulation model subsystems. And the user-interface subsystems are incorporated to present the water system operators and managers the results from data and model sugsystems. User-friendly menu with animated graphic modules are adopted to help understand irrigation controls for the district. This paper issues the overal descriptions of DSS as applied to Anjuk irrigation district. The details of major model components for the irrigation controls are presented along with real-time data collection systems. The potentials of DSS have been appraised very practical and promising for better irrigation system operation and management.

  • PDF

ArcHydro를 이용한 GIS기반의 관개시스템 네트워크 모델링 - 안고농촌용수구역을 대상으로 - (Network Modeling of Paddy Irrigation System using ArcHydro GIS - ANGO Agricultural Water District -)

  • 박근애;박민지;장중석;김성준
    • 한국지리정보학회지
    • /
    • 제10권1호
    • /
    • pp.73-83
    • /
    • 2007
  • 농촌지역의 복잡한 물관리 체계를 정립하고 효율적인 용수관리를 위해서는 하천과 농업용 수리시설물의 연계를 통한 관개시스템의 네트워크 모델링이 필요하다. 본 연구에서는 수자원분야의 지리정보데이터를 다루도록 개발된 ArcHydro Model을 한국농촌공사에서 개발한 농촌용수수요공급량산정시스템 (AWDS: Agricultural Water Demand & Supply Estimation System)과 연계하여 안성천유역내에 위치하는 "안고"농촌용수구역을 대상으로 네트워크 모델링을 구현하였다. ArcHydro Model을 이용하여 유역내의 24개의 저수지, 18개의 양수장, 28개의 취입보 등 총 70개의 수리시설물의 공간객체와 하천망간의 연관성을 부여하여 상호간의 위상관계를 가지도록 네트워크 모델링을 하였다. 또한 농촌용수수요공급량산정시스템에 대한 텍스트 결과를 ArcHydro Model을 통하여 수리시설물의 공간위치를 가시적으로 표현함으로서 특정 시설물의 위치파악이 쉽고, 순차적인 물수지의 체계를 이해하기 쉽도록 ArcGIS의 시스템에 메뉴를 추가하여 개발하였다.

  • PDF

농업용 저수지 공급량과 수요량의 확률분포 및 신뢰성 해석 기법을 활용한 물 공급 취약성 평가 (Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods)

  • 남원호;김태곤;최진용;이정재
    • 한국농공학회논문집
    • /
    • 제54권2호
    • /
    • pp.37-46
    • /
    • 2012
  • The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.

미래 기후변화에 따른 농업용 저수지 용수공급의 불확실성 (Uncertainty of Water Supply in Agricultural Reservoirs Considering the Climate Change)

  • 남원호;홍은미;최진용
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.11-23
    • /
    • 2014
  • The impact and adaption on agricultural water resources considering climate change is significant for reservoirs. The change in rainfall patterns and hydrologic factors due to climate change increases the uncertainty of agricultural water supply and demand. The quantitative evaluation method of uncertainty based on agricultural water resource management under future climate conditions is a major concern. Therefore, it is necessary to improve the vulnerability management technique for agricultural water supply based on a probabilistic and stochastic risk evaluation theory. The objective of this study was to analyse the uncertainty of water resources under future climate change using probability distribution function of water supply in agricultural reservoir and demand in irrigation district. The uncertainty of future water resources in agricultural reservoirs was estimated using the time-specific analysis of histograms and probability distributions parameter, for example the location and the scale parameter. According to the uncertainty analysis, the future agricultural water supply and demand in reservoir tends to increase the uncertainty by the low consistency of the results. Thus, it is recommended to prepare a resonable decision making on water supply strategies in terms of using climate change scenarios that reflect different future development conditions.

가뭄대책 행정지원을 위한 지역논가뭄평가모형 ADEM의 개발 (Development of An Agricultural Drought Evaluation Model for Administrative Decision Support)

  • 장민원;정하우;박기욱
    • 농촌계획
    • /
    • 제9권2호
    • /
    • pp.29-37
    • /
    • 2003
  • The objectives of this study are to develop an agricultural drought evaluation model based on administrative boundaries and to assist the effective drought-related decision-making of local governments. The model which was named ADEM(Administrative Drought Evaluation Model for Paddies) is designed to simulate daily water balance between available water quantities from various agricultural water facilities such as reservoirs, wells, pump stations, etc. and water requirements in paddies. And in order to numerically describe the agricultural drought severity, two indices were defined; One is ADFP(Agricultural Drought Frequency for Paddies) which is calculated with a frequency analysis of monthly water deficit, and the other is ADIP(Agricultural Drought Index for Paddies) with a scale of $-4.2{\sim}+4.2$. The developed model was applied to Yeoju district and showed good correspondence with the historical records of drought.

수리계획을 이용한 금호강유역의 최적 물배분 시스템모델 (Optimum Water Allocation System Model in Keumho River Basin with Mathematical Programming Techniques)

  • 안승섭;이증석
    • 한국농공학회지
    • /
    • 제39권2호
    • /
    • pp.74-85
    • /
    • 1997
  • This study aims at the development of a mathematical approach for the optimal water allocation in the river basin where available water is not in sufficient. Its optimal allocation model is determined from the comparison and analysis of mathematical programming techniques such as transportation programming and dynamic programming models at its optimal allocation models. The water allocation system used in this study is designed to be the optimal water allocation which can satisfy the water deficit in each district through inter-basin water transfer between Kumho river basin which is a tributary catchment of Nakdong river basin, and the adjacent Hyungsan river basin, Milyang river basin and Nakdong upstream river basin. A general rule of water allocation is obtained for each district in the basins as the result of analysis of the optimal water allocation in the water allocation system. Also a comparison of the developed models proves that there is no big difference between the models Therefore transportation programming model indicates most adequate to the complex water allocation system in terms of its characteristics It can be seen, however, that dynamic programming model shows water allocation effect which produces greater net benefit more or less.

  • PDF

타 유역에서 새만금 유역으로 유입되는 수량 변화 (Inflow Water into Saemangeum Area from Other Watershed)

  • 최진규;손재권;김태철
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.543-546
    • /
    • 2003
  • This study was carried out to survey the amount of inflow water from Geumgang reservoir, Yongdam dam and Sumjin dam into Saemangeum area, and to provide the basic data to use and manage the water resources of Saemangeum district effectively. The total volume of inflow water from the above hydraulic facilities was measured as $775.8{\times}10^6m^3$ in 2002.

  • PDF