• 제목/요약/키워드: agricultural pest

검색결과 492건 처리시간 0.022초

농업용 방제드론의 방제면적 산출 알고리즘에 관한 연구 (Development of Spray Calculation Algorithm Using the Pest Control Drones)

  • 임진택
    • 융합정보논문지
    • /
    • 제10권10호
    • /
    • pp.135-142
    • /
    • 2020
  • 최근 농업분야에서는 드론의 보급으로 인하여 노령화를 해결하기 위한 4차 산업 혁명의 중요 기술로 분류되고 있다. 특히, 초경량비행장치 멀티콥터의 국가 자격증을 취득하고자하는 연령대가 다양하고 취득 후 수익 활동을 위한 분야로는 드론을 활용한 영상 촬영 및 방제가 대표적이다. 그러나 드론을 활용한 방제기술은 조종자의 조종 기술의 의존도가 높아 조종 숙련에 따라 살포효과의 차이가 발생한다. 이를 보완한다면 농업의 방제분야의 활용도가 다양해 질 것으로 기대된다. 대표적인 보완 기술은 농업용 방제드론의 기체 특성을 고려한 정확한 방제면적이 산출이다. 본 논문에서는 농업용 방제드론의 살포 특성 분석을 위하여 유효살포시간, 유효살포간격을 정식화하고 방제드론 종류에 따른 정확한 방제면적 산출이 가능한 알고리즘을 제안한다. 추후 본 알고리즘을 기반으로 드론방제사의 비행 방식에 따른 비산 문제를 개선하고 최적의 방제 매뉴얼을 구축하여 방제 현장에 활용하고자 한다.

Towards Integrated Pest Management of Rice in Korea

  • Lee, Seung-Chan
    • 한국응용곤충학회지
    • /
    • 제31권3호
    • /
    • pp.205-240
    • /
    • 1992
  • In reality, it is a green revolution of the entire agricultural matrix in Korea that integrated pest control plays an important role in the possible breakthrough in rice self-sufficiency. In paddy agroecosystem as man-modified environment, rice is newly established every year by transplantation under diverse water regimes which affect a microclimate. Standing water benefits rice by regulating the microclimate, but it favors the multiplication of certain pets through the amelioration of the microclimate. Further, the introduction of high yielding varieties with the changing of cultural practices results in changing occurrence pattern of certain pests. In general, japonica type varieties lack genes resistant to most of the important pests and insect-borne virus diseases, whereas indica type possesses more genes conferring varietal resistance. Thus, this differences among indica type, form the background of different approaches to pest management. The changes in rice cultivation such as double cropping, growing high-yielding varieties requiring heavy fertilization, earlier transplanting, intensvie-spacing transplanting, and intensive pesticide use as a consequence of the adoption of improves rice production technology, have intensified the pest problems rather than reduced them. The cultivation of resistant varieties are highly effective to the pest, their long term stability is threathened because of the development of new biotypes which can detroy these varieties. So far, three biotypes of N. lugens are reported in Korea. Since each resistant variety is expected to maintain several years the sequential release of another new variety with a different gene at intervals is practised as a gene rotation program. Another approach, breeding multilines that have more than two genes for resistance in a variety are successfully demonstrated. The average annual rice losses during the last 15 years of 1977-’91 are 9.3% due to insect pests without chemical control undertaken, wehreas there is a average 2.4% despite farmers’insecticide application at the same period. In other words, the average annual losses are prvented by 6.9% when chemical control is properly employed. However, the continuous use of a same group of insecticides is followed by the development of pest resistance. Resistant development of C. suppressalis, L. striatellus and N. cincticeps is observed to organophosphorous insecticides by the mid-1960s, and to carbamates by the early 1970s in various parts of the country. Thus, it is apparent that a scheduled chemical control for rice production systems becomes uneconomical and that a reduction in energy input without impairing the rice yield, is necessarily improved through the implementation of integrated pest management systems. Nationwide pest forecasting system conducted by the government organization is a unique network of investigation for purpose of making pest control timely in terms of economic thresholds. A wise plant protection is expected to establish pest management systems in appropriate integration of resistant varieties, biological agents, cultural practices and other measures in harmony with minimizing use of chemical applications as a last weapon relying on economic thresholds.

  • PDF

Research Progress on Leptotrombidium deliense

  • Lv, Yan;Guo, Xian-Guo;Jin, Dao-Chao
    • Parasites, Hosts and Diseases
    • /
    • 제56권4호
    • /
    • pp.313-324
    • /
    • 2018
  • This article reviews Leptotrombidium deliense, including its discovery and nomenclature, morphological features and identification, life cycle, ecology, relationship with diseases, chromosomes and artificial cultivation. The first record of L. deliense was early in 1922 by Walch. Under the genus Leptotrombidium, there are many sibling species similar to L. deliense, which makes it difficult to differentiate L. deliense from another sibling chigger mites, for example, L. rubellum. The life cycle of the mite (L. deliense) includes 7 stages: egg, deutovum (or prelarva), larva, nymphochrysalis, nymph, imagochrysalis and adult. The mite has a wide geographical distribution with low host specificity, and it often appears in different regions and habitats and on many species of hosts. As a vector species of chigger mite, L. deliense is of great importance in transmitting scrub typhus (tsutsugamushi disease) in many parts of the world, especially in tropical regions of Southeast Asia. The seasonal fluctuation of the mite population varies in different geographical regions. The mite has been successfully cultured in the laboratory, facilitating research on its chromosomes, biochemistry and molecular biology.

A New Species of Chigger Mite (Acari: Trombiculidae) from Rodents in Southwest China

  • Ren, Tian-Guang;Guo, Xian-Guo;Jin, Dao-Chao;Wu, Dian;Fletcher, Quinn E.
    • Parasites, Hosts and Diseases
    • /
    • 제52권1호
    • /
    • pp.63-67
    • /
    • 2014
  • This paper describes a new species of chigger mite (Acari: Trombiculidae), Gahrliepia cangshanensis n. sp., from rodents in southwest China. The specimens were collected from Yunnan red-backed voles, Eothenomys miletus (Thomas, 1914), and a Chinese white-bellied rat, Niviventer confucianus (Milne-Edwards, 1871) in Yunnan Province. The new species is unique mainly in its number of dorsal setae (n=21), and it has the following features: fT (formula of palpotarsus)=4B (B=branched), fp (formula of palpal seta)=B/N/N/N/B (N=naked), a broad tongue-shaped scutum with an almost straight posterior margin, and 17 PPLs (posterior posterolateral seta) with a length of 36-43 ${\mu}m$. This chigger mite may also infect other rodent hosts and may be distributed in other localities.

Bipolaris cactivora(Petrak) Alcorn에 의한 접목선인장 줄기썩음병 (Bipolaris Stem Rot of Cactus Caused by Bipolaris cactivora (Petrak) Alcorn)

  • 장미;현익화;이영희
    • 한국식물병리학회지
    • /
    • 제14권6호
    • /
    • pp.661-663
    • /
    • 1998
  • Bipolaris stem rot of cactus severely occurred up to 77% at the field of Koyang and Kimcheon from 1996 to 1997. The symptom was initially light yellow, water soaked round lesion, subsequently turned light brown and dried to death. The causal fungus was identified as Bipolaris cactivora (Petrak) Alcorn. Conidia were obclavate to fusoid, rounded ends, light brown color, 1~4 septate, and conidial size was 23~42$\times$6~9 ${\mu}{\textrm}{m}$ (av. 32.5$\times$7.5 ${\mu}{\textrm}{m}$). Conidiophores were caespitose, straight, pale to golden brown and 67~280 ${\mu}{\textrm}{m}$ in length. When healthy cacti were inoculated with the isolates obtained form the lesion of diseased plants, the same characteristic symptoms as those in the field were produced. The symptom of four-month-old cactus was developed more rapidly than that of six-month-old cactus. The pathogen was reisolated from the artificially inoculated lesions.

  • PDF

Tolerance: An Ideal Co-Survival Crop Breeding System of Pest and Host in Nature with Reference to Maize

  • Kim, Soon-Kwon
    • 한국작물학회지
    • /
    • 제45권1호
    • /
    • pp.59-70
    • /
    • 2000
  • In nature, plant diseases, insects and parasites (hereafter called as "pest") must be co-survived. The most common expression of co-survival of a host crop to the pest can be tolerance. With tolerance, chemical uses can be minimized and it protects environment and sustains host productivity and the minimum pest survival. Tolerance can be applicable in all living organisms including crop plants, lifestocks and even human beings. Tolerant system controls pest about 90 to 95% (this pest control system often be called as horizontal or partial resistance), while the use of chemicals or selection of high resistance controls pest 100% (the most expression of this control system is vertical resistance or true resistance). Controlling or eliminating the pests by either chemicals or vertical resistance create new problems in nature and destroy the co-survial balance of pest and host. Controlling pests through tolerance can only permit co-survive of pests and hosts. Tolerance is durable and environmentally-friend. Crop cultivars based on tolerance system are different from those developed by genetically modified organism (GMO) system. The former stabilizes genetic balance of a pest and a host crop in nature while the latter destabilizes the genetic balance due to 100% control. For three decades, the author has implemented the tolerance system in breeding maize cultivars against various pests in both tropical and temperate environments. Parasitic weed Striga species known as the greatest biological problem in agriculture has even been controlled through this system. The final effect of the tolerance can be an integrated genetic pest management (IGPM) without any chemical uses and it makes co-survival of pests in nature.in nature.

  • PDF

논 태우기가 논 포장 및 농경지 서식 절지동물에 미치는 영향 평가 (Evaluation of the Effect of Burning Rice Paddy Fields on Arthropods in Rice Paddy Fields and Agricultural Fields)

  • 공민재;전성욱;권경화;송순이;김광호
    • 한국환경과학회지
    • /
    • 제30권12호
    • /
    • pp.993-1003
    • /
    • 2021
  • It is known that the effect of traditional agricultural techniques of burning farmland such as paddy fields and fields gradually declines and affects both the fauna and flora of the rice paddy as well as pests. Therefore, in this study, a study was conducted to investigate the effects of burning rice paddy fields and rice paddy fields levee on the control effect of winter pests inhabiting agricultural land and the amount of pests generated and damaged during the growing season. As a result of this study, the pest control effect of incineration reduces not only the density of pests, but also beneficial insects (natural enemies) and non-reptiles. It is judged that burning has a very low insect control effect. It is expected to be used as basic data to create a sustainable agricultural environment, such as minimizing various negative effects such as pest control effects, wildfires, and air pollution caused by incineration, and suppressing unnecessary incineration and fine dust generation.