• Title/Summary/Keyword: agricultural lake

Search Result 217, Processing Time 0.037 seconds

A Study on the Application of Total Pollution Load Management System for Water Quality Improvement in Agriculture Reservoir (농업용 호소의 수질개선을 위한 오염총량관리제의 적용에 관한 연구)

  • Oh, Dae-Min;Lee, Young-Shin
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.5
    • /
    • pp.365-375
    • /
    • 2009
  • Agriculture reservoirs need a systematic approach that can control water purity and water improvement. The area under study, Bunam Lake exceeds the agricultural water standard level due to contamination from the upper stream. When the Taean Enterprise City was planned, the water quality improvement plan was applied to minimize the environmental change. However, in order to continuously maintain the water quality in the Bunam Lake, it was essential to apply the Total Pollution Load Management System (TPLMs). In order to achieve the targeted water quality in the Bunam Lake, standard flow rates and targeted water quality levels were applied to obtain the loading capacity which is as follows : BOD 1,891.2 kg/d, T-N 1,945.7 kg/d, T-P 131.7 kg/d. Also, the regional development load was calculated as, BOD 1,083.6 kg/d, T-N 942.2 kg/d, T-P 61.8 kg/d, which is required to be deceased :- by BOD 378.4 kg/d, T-N 198.9 kg/d, T-P 31.6 kg/d in order to safely achieve the targeted water quality in the Bunam Lake.

Exploring the Dynamics of Dissolved Oxygen and Vertical Density Structure of Water Column in the Youngsan Lake (인공호소인 영산호의 용존산소 분포와 수층 성층구조의 연관성 분석)

  • Song, Eun-Sook;Cho, Ki-An;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.163-174
    • /
    • 2015
  • The Youngsan Lake was constructed to supply agricultural water to the extensive rice fields in the basin of the lake in 1981. Hypoxia has often developed in the bottom water of the lake during the warm season although the water depth is relatively shallow (< 16 m). We investigated the spatial and temporal variations of dissolved oxygen (DO) and physical properties such as water temperature, salinity and turbidity to elucidate the effects of change in physical properties on DO dynamics in the lake. Vertical profiles of DO, temperature, salinity, and water density were also explored to verify the development of stratification in relation to DO variation in the water column. Hypoxia (DO < $2mg\;L^{-1}$) was not observed in the upper regions whereas hypoxia was detected in the lower regions during the warm season. Thermocline generally developed in the lower regions during the warm season unlike the previous studies in which no thermocline was observed. However, water column was well mixed when freshwater water was discharged from the reservoir through the sluice gate of the dike. DO concentrations also decreased when halocline or pycnocline developed during the dry season suggesting that the vertical stratification of water column affects DO dynamics although the water depth is shallow in the Youngsan lake.

Characteristics and Improvement of the Water Quality in Wangkung Reservoir (농업용 저수지의 수질특성과 수질개선 -왕궁저수지를 대상으로 -)

  • Yoon, Kyung-Sup;Lee, Kwang-Sik;Kim, Hyung-Joong;Hwang, Gil-Son
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.365-368
    • /
    • 2002
  • In spite of considerable advances in water quality control measures within lake, many basic questions concerning an eutrophication still remains unanswered and it becomes obvious that an extensive limnological database is needed for the inter-comparison between bodies of water and for the assessment of the status of lake water quality. In order to diagnose the water environment and assess the changes of the water quality, Wangkung irrigation reservoir was investigated by a long-term monitoring program for the physical, chemical and biological water quality parameters. In addition, these data was used to determine the design elements of natural purification facilities.

  • PDF

Variation of Water Level on the Upstream Gauging Station by Operation of the Drainage Sluice Gate of Geumgang Estuary Dam (금강하구둑 배수갑문 조작에 의한 상류수역의 수위변동)

  • Park, Seung-Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.15-24
    • /
    • 2005
  • The normalization on the characteristics of water level change at the upstream gauging station was attempted according to the operation of drainage sluice gate of the Geumgang estuary dam. The characteristics were normalized by the analysis of water level change and by the linear-regression of the water level data measured at the inner station of Geumgang estuary dam and upstream gauging station. The results of normalization may be referred to the management of Geumgang estuary lake, the operation of pumping and drainage stations in the shore of the lake. The mean response time of water level change on Ibpo, Ganggyeong and Gyuam water level station were 39,81 and 160 minutes, when sluice gate was opened respectively. The mean velocity of surface wave, the mean displacement of water level change, the mean time of water level change and the mean rate of water level change varied largely depending on the location of gauging station and the characteristics of stream section of the water level gauging station.

Water Quality Monitoring by Snowmelt in Songcheon, Doam Lake Watershed (도암호 유역의 융설에 의한 수질 변화 모니터링)

  • Kwon, Hyeokjoon;Hong, Dahye;Byeon, Sangdon;Lim, Kyoungjae;Kim, Jonggun;Nam, Changdong;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.87-95
    • /
    • 2021
  • The Doam Lake Watershed is one of Gangwon-do's non-point source management areas. This area has a lot of snowfall in winter, and it is expected that there will be a lot of soil erosion in early spring due to snow melting. In this study, snow melting was monitored in the Doam Lake watershed from February to 3, 2020. It was conducted to analyze the water quality changes by calculating the concentration of non-point source pollution caused by snowmelt, and to compare the concentration of water quality during snowmelt event with rainfall and non-rainfall event. As a result of water quality analysis, Event Mean Concentration (EMC) at the first monitoring was SS 33.9 mg/L, TP 0.13 mg/L, TN 4.33 mg/L, BOD 1.35 mg/L, TOC 1.84 mg/L. At the second monitoring, EMC were SS 81.3 mg/L, TP 0.15 mg/L, TN 3.12 mg/L, BOD 1.32 mg/L, TOC 3.46 mg/L. In parameter except SS, it showed good water quality. It is necessary to establish management measures through continuous monitoring.

Recent Changes of Sedimentation Rate in Lake Takkobu, Northern Japan, Determined 210Pb Dating (210Pb 연대측정에 의한 일본 타호부호수의 토사퇴적속도 변화 분석)

  • Ahn, Young Sang;An, Ki-Wan;Lee, Kye-Han;Nakamura, Futoshi
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.80-86
    • /
    • 2014
  • $^{210}Pb$ dating was conducted to examine the influence of land use changes in the forest catchment on lake sedimentation. The Kushiro River, into which Lake Takkobu drains under regular flow conditions, contributed to an increased sedimentation rate in sampling point at the lake outflow because turbid water from the Kushiro River flows back into Lake Takkobu during floods. The elevated sediment flux from the catchment dilutes the $^{210}Pb$ concentration in sampling points at the inflow of the Takkobu River and the lake outflow, which causes fluctuations in the $^{210}Pb$ concentrations in sediment cores. The $^{210}Pb$ dating was estimated using the CRS (Constant rate of Supply) model. The dates by the CRS model in Lake Takkobu profiles were in good agreement with the dates by $^{137}Cs$. Sedimentation rates reconstructed for the past 100-150 years suggested that sedimentation rates increased drastically following land use changes. While a natural sedimentation rate of $0.01-0.03g/cm^2/year$ is observed until the 1880s, whereas lake sedimentation accelerated to $0.03-0.09g/cm^2/year$ following land use changes such as deforestation and channelization, between the 1880s and 1940s. In particular, the sedimentation rates have been associated with deforestation, channelization, agricultural development and road construction, since the 1980s, and these rates were about 9-28 times higher than those under natural conditions, leading to accelerated lake shallowing.

Ecological Studies of the Lake Changjamot II. Primary Production in Lake Changjamot During Spring Season (장자못의 생태학적 연구 제II보 춘계 장자못의 기초생산)

  • 엄규백
    • Journal of Plant Biology
    • /
    • v.17 no.2
    • /
    • pp.53-62
    • /
    • 1974
  • A study was made on the primary production of Lake Changjamot during the spring season of 1973 by menas of the oxygen method. The stratification of temperature and dissolved oxygen were formed in May with the stratified structure of phytoplankton. The range of Secchi disc transparency was from 0.8m to 2.3m during the nine months of this investigation, which was begun in January, 1973. The value was lowest in early June when the phytoplankton blooming reached the peak. The concentration of PO4-P, NH3-N, NO3-N and NO3-N was reduced at the beginning of the phytoplankton blooming and increased again after May except PO4-P. It might have been caused by the inflow of the nitogenous fertilizer from the surrounding agricultural area since May when farming was started. The total amount of chlorophyll-a in the entire water column varied from 25mg/$m^2$ to 277mg/$m^2$ from January till September with the maximum value occurring in early June. These values show a considerable eutrophication of the in comparison with the data obtained in 1969. The daily gross production in the lake varied from a low of 655mgC/$m^2$ to a high of 2,859 mgC/$m^2$ during the spring season and this corresponds to the variation of the amount of chlorophyll. The total amount of daily respiration varied from 650mg C/$m^2$ in winter to 2,307 mg C/$m^2$ in late spring and exceeds gross primary production especially in late May showing the negative balance of daily production and consumption of organic material at that time. In conclusion, Lake Changjamot is a fairly productive and a moderately autotrophic lake and has been eutrophicated much during the past four years.

  • PDF

Impact of the Mekong River Flow Alteration on the Tonle Sap Lake in Cambodia

  • Lee, Giha;Kim, Joocheol;Jung, Kwansue;Lee, Hyunseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.231-231
    • /
    • 2015
  • Rapid development in the upper reaches of the Mekong River, in the form of construction of large hydropower dams and reservoirs, large irrigation schemes, and rapid urban development, is putting water resources under stress. Many scientific reports have pointed out that cascade dams along the Mekong River lead to serious problems: not only hydrologically but also a decline of agricultural productivity due to a decrease of sediment supply in the Mekong Delta and a change of fish amount due to drastic change of the water environment. Cambodia and Vietnam, located in the lowest Mekong basin, are gravely affected by radical changes of hydrologic regime due to Mekong River developments. In particular, the Tonle Sap Lake in Cambodia is very sensitive to the flood cycle and flow variation of the Mekong River as well as inflow water quality from the Mekong River. More than 50% of Cambodian GDP depends on the primary industries such as agriculture, fishing, and forestry, and the Tonle Sap Lake plays an important role to support the national economy in Cambodia. In addition, Cambodian people usually take nourishment from the fish of Tonle Sap Lake. This research aims to assess the impacts of the Mekong river flow alternation on the hydrologic regime of the Mekong River - Tonle Sap Lake. We carried out rainfall-runoff-inundation simulation using CAESER-LISFLOOD for integrated water resource management in the Tonle Sap Basin and then analyze flood inundation variation of the Tonle Sap Lake due to the scenarios. Furthermore, the simulated inundation maps were compared to MODIS satellite images for model verification and hydrologic prediction.

  • PDF