• 제목/요약/키워드: agricultural field

검색결과 4,566건 처리시간 0.028초

Effect of Temperature on Development and Reproduction of the Emma Field Cricket, Teleogryllus emma(Orthoptera: Gryllidae)

  • Kim, Nam-Jung;Hong, Seong-Jin;Seol, Kwang-Youl;Kim, Seong-Hyun;Ahn, Nan-Hee;Kim, Mi-Ae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제15권1호
    • /
    • pp.69-73
    • /
    • 2007
  • To establish the indoor-rearing system of the emma field cricket, Teleogryllus emma, the effects of temperature on development and reproduction of the emma cricket have been studied. The influence of temperature on developmental periods of emma field cricket was investigated under the eight temperatures of 15, 18, 21, 25, 27, 29, 31 and $35^{\circ}C$, under $60{\pm}5%$ R.H. and 16L:8D photoperiod. The developmental periods of T. emma nymphs had a range of 124.8 days to 44.4 days at the temperature of $21^{\circ}C$ and $35^{\circ}C$, respectively. At $15^{\circ}C$ and $18^{\circ}C$, however, all tested individuals died before emergence. The highest survival rate was 90% at $25^{\circ}C$, but there were no statistically significant differences among the temperatures. The adult weight increased with increasing temperatures although the weight at $35^{\circ}C$ was decreased. In addition, the influence of temperature on reproduction of emma field cricket was investigated under three temperatures $22^{\circ}C,\;25^{\circ}C\;and\;28^{\circ}C$, under $60{\pm}5%$ R.H. and 16L:8D photoperiod. The longevity of female/male adults were 65.8/79.2 days, 68.5/67.8 days, 46.8/57.4 days at the temperature $22^{\circ}C,\;25^{\circ}C\;and\;28^{\circ}C$, respectively. The preoviposition periods were 32.5 days at $22^{\circ}C,\;22.9^{\circ}C$ days at $25^{\circ}C$ and 22.1 days at $28^{\circ}C$. The highest average fecundity per female was 737.3 at $25^{\circ}C$.

Development of Chain Conveyor-type Spinach Harvester

  • Jun H. J.;Hong J. T.;Choi Y.;Kim Y. K.
    • Agricultural and Biosystems Engineering
    • /
    • 제5권2호
    • /
    • pp.40-44
    • /
    • 2004
  • This study was conducted to solve the problem of spinach harvesting done by manpower at the outdoor field during the cold winter season. Prototype spinach harvester was designed to dig, pick-up, and collect in a continuous operation for harvesting outdoor field-planted crawling type spinach. In the field test, two types of blades (Type A : angle of $150^{\circ}$, Type B : straight) were used for measuring the cutting loads of spinach and chain conveyor with lugs was used for picking up the root cut spinach. Prototype's vibrating blade reduced the digging power of the fixed blade by $46\%$. The loss was also very little ($0.7\%$) with a digging depth of 4 cm, an oscillation frequency of 748 rpm, and an oscillation distance of 33 mm. The working performance of the prototype spinach harvester was 38 hour/ha resulting to $96\%$ labor cost reduction compared to the conventional harvesting.

  • PDF

기상 및 영농방식 변화에 따른 농업용 저수지의 설계한발빈도 및 이수안전도 재평가 (Reevaluation of Design Frequency of Drought and Water Supply Safety for Agricultural Reservoirs under Changing Climate and Farming Methods in Paddy Field)

  • 남원호;권형중;최경숙
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.121-131
    • /
    • 2018
  • Past climate change influences multiple environmental aspects, certain of which are specifically related to agricultural water resources such as water supply and demand. Changes on rainfall and hydrologic patterns can increases the occurrence of reservoir water shortage and affect the future availability of agricultural water resources. It is a main concern for sustainable development in agricultural water resources management to evaluate adaptation capability of water supply under the changing climate and farming methods in paddy field. The purpose of this study is an evaluation method of design frequency of drought and water supply safety for agricultural reservoirs to investigate evidence of climate change occurrences at a local scale. Thus, it is a recommended practice in the development of water supply management strategies on reservoir operation under changing climate and farming methods in paddy field.

변화할당효과를 고려한 논 면적 예측 모형의 개발 (Development of a Paddy Field Estimation Model Considering Shift-share Effects)

  • 장우석;정남수;박기욱
    • 한국농공학회논문집
    • /
    • 제50권3호
    • /
    • pp.83-89
    • /
    • 2008
  • Estimations of paddy field area are important for agricultural water supply planning. Especially these estimations have to be excused by drainage basin. In this research, we developed a paddy field estimation model considering shift-share effects such as national growing, structural, local effects. National growing effects are estimated by adopting the result of KREI-ASMO model which predict farm land area in national level. Paddy field structural effects are estimated using statistical data about farmhouse numbers and cultivation areas. Local allocation effects are calculated by differences of estimations and real data. The results using data from 1998 to 2003 show that developed model estimates 2006 paddy field areas in each province in 5% error and is applicable to predict future change of paddy field.

GIS를 이용한 고랭지 농업지대의 자연입지 적지 평가 (Evaluation of Natural Suitability of Mountain Agricultural Area Using GIS)

  • 이강복;최예환;김기성
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.371-374
    • /
    • 1999
  • Mountain agricultural land should become to the land use considering natural environmental conditions with characteristics of natural suitability . In this study , an evaluation of natural suitability was done for Pyongchang-gun , Kangwon-Do which has a lot of mountain agricultural lands using GIS according to the kind of land use (paddy, field, ordinary upland field, grassland, orchard land, forest).

  • PDF

NON-CONTACT SENSORS FOR DETECTING DISTANCE FROM THE FIELD SURFACE

  • Lee, Jeyong-;Minoru-Yamazaki;Akira-oida;Hiroshi-Nakashima;Hiroshi-Shimizu
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.373-382
    • /
    • 1993
  • A non-contact sensor for detecting distance from field surface to a predetermined location of a tractor will be useful to control precise height of implements such as tillage machinery, mowers etc.. An optical and an ultrasonic sensors were designed and fabricated . The indoor and outdoor experiments were conducted to obtain the static and dynamic characteristics of the two sensors at several moisture levels of four soils and on the soil surface with a designed shape. The results revealed that the optical sensor is unsuitable for soils with high moisture content but showed better detecting accuracy on the irregularity of soil surface.

  • PDF

Effective Screening Method for Viviparous Germination of Rice

  • Ju, Young-Cheoul;Han, Sang-Wook;Park, Joong-Soo;Park, Kyeong-Yeol
    • 한국작물학회지
    • /
    • 제45권2호
    • /
    • pp.103-107
    • /
    • 2000
  • The viviparity of 28 rice varieties was tested at 25 days after heading(DAH), 35DAH, and 45DAH in the laboratory and field condition for 12 days. The incubation temperature was 20/l$0^{\circ}C$ (day/night), 25/15$^{\circ}$C$ and 30/20$^{\circ}$C$ in the laboratory test, and under field water conditions in the field test. The biggest varietal difference of viviparity was found in the laboratory test when examined at 45DAH with the 6-day incubation under 25/15$^{\circ}$C$ . At this conditions the mean viviparous ratio was 32.1 % with the range of 53.9 and the variance of 259.5. In the field test, the significant varietal difference in the viviparity was also found in the lodging treatment at 45 DAH for 6 days. Correlation coefficient analysis between the field and laboratory tests was highly significant from 4 days after incubation at 45 DAH and after 6-day incubation at 35 DAH, and correlation coefficient was higher as incubation days in the laboratory and submerged days under field water became longer. Considering the correlation between the field and laboratory tests, varietal difference of viviparity and convenience of testing, the laboratory test at 45 DAH for 6-day incubation under 25/15$^{\circ}$C$ was the most efficient evaluation method for the viviparity of rice cultivar.

  • PDF

노지 작물의 적정 관개계획을 위한 토양수분의 공간변이성 분석 (Spatial Variability of Soil Moisture and Irrigation Scheduling for Upland Farming)

  • 최용훈;김민영;김영진;전종길;서명철
    • 한국농공학회논문집
    • /
    • 제58권5호
    • /
    • pp.81-90
    • /
    • 2016
  • Due to droughts and water shortages causing severe damage to crops and other vegetations, much attention has been given to efficient irrigation for upland farming. However, little information has been known to measure soil moisture levels in a field scale and apply their spatial variability for proper irrigation scheduling. This study aimed to characterize the spatial variability and temporal stability of soil water contents at depths of 10 cm, 20 cm and 30 cm on flat (loamy soil) and hill-slope fields (silt-loamy soil). Field monitoring of soil moisture contents was used for variogram analysis using GS+ software. Kriging produced from the structural parameters of variogram was applied for the means of spatial prediction. The overall results showed that the surface soil moisture presented a strong spatial dependence at the sampling time and space in the field scale. The coefficient variation (CV) of soil moisture was within 7.0~31.3 % in a flat field and 8.3~39.4 % in a hill-slope field, which was noticeable in the dry season rather than the rainy season. The drought assessment analysis showed that only one day (Dec. 21st) was determined as dry (20.4 % and 24.5 % for flat and hill-slope fields, respectively). In contrary to a hill-slope field where the full irrigation was necessary, the centralized irrigation scheme was appeared to be more effective for a flat field based on the spatial variability of soil moisture contents. The findings of this study clearly showed that the geostatistical analysis of soil moisture contents greatly contributes to proper irrigation scheduling for water-efficient irrigation with maximal crop productivity and environmental benefits.

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • 농업과학연구
    • /
    • 제42권1호
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.