• Title/Summary/Keyword: agri-food system

Search Result 46, Processing Time 0.022 seconds

Control of Catabolite Repression by Limit Feed of Cellobiose in Cellulomomas sp. (Cellulomonas sp.에 있어서 셀로비오스의 미량공급에 의한 생성물 저해의 조절)

  • Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.3 no.2
    • /
    • pp.235-243
    • /
    • 1976
  • As an investigation on the catabolite repression system in cellulase production by Cellulomons sp. CS1-1, the organism was tested on the avicel overlay plates containing glucose or cellobiose at a range of concentration and was grown in continuous culture vessel, supplied by cellobiose medium, aiming the enhanced production of extracellular CM-cellulase at low dilution rates. Product inhibition of cellulase action by cellobiose was also tested. The results obtained are: i) no inhibition of CM-cellulase was observed up to 10 mM(3.4mg/ml) cellobiose in the reaction mixture, however 30% inhibition was observed at 20mM and 55% at 50mM, ii) the tests of catabolite repression on the solid media were successful, and avicel degradation was markedly repressed by glucose or cellobiose, iii) at low concentrations of cellobiose, dilution rate 0.05 and $1.0hour^{-1}$, no significant increase was observed in the production of either intra or extracellular CM-cellulase.

  • PDF

The application of new breeding technology based on gene editing in pig industry - A review

  • Tu, Ching-Fu;Chuang, Chin-kai;Yang, Tien-Shuh
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.791-803
    • /
    • 2022
  • Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU's Green Deal and biodiversity strategies and even meet the United Nations' sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.

Present Status of Rooftop Gardening in Sylhet City Corporation of Bangladesh: an Assessment Based on Ecological and Economic Perspectives

  • Rahman, Md. Habibur;Rahman, Mizanur;Kamal, Md. Mostafa;Uddin, Md. Jasim;Fardusi, Most. Jannatul;Roy, Bishwajit
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • Present study analyzes the rooftop gardening status, floristic composition and cost and return of the rooftop garden in Sylhet City Corporation of northeastern Bangladesh. Data was collected from 450 rooftop gardeners randomly during July-September 2010. Study reveal that rooftop gardening is generally for mental satisfaction (95.3%) followed by leisure time activity (87.8%) in the study area and almost all the family members of gardeners' were involved; while collection of planting materials, sites preparation and marketing of products were reported to be carried out by males only (male 71.33%). Middle income classes were most interested in rooftop gardening (43.78%). The survey recorded 53 plant species (35 families) of which Cucurbitaceae family represented highest eight species. Shrubs (28%) were highest followed by herbs (26%) among agri-crops (36%) and flower species (30%). About 89% of the rooftop gardeners procured planting materials from nursery, market, fair, neighbor, relative and friends and they mostly prefer to use seedlings (48%) for roof gardening followed by direct seed sowing (21%). Gardeners sell products sporadically in different local markets, directly or through intermediaries, with no uniform pricing for system. Rooftop gardening improves the food security and meet nutritional deficiency to the gardeners. Survey revealed that generally very few people consider rooftop gardening commercially to get profit and from the cost-return analysis this gardening system can be economically viable if proper and scientifically managed. The study conclude that active government and NGOs could play vital role to increasing this activities by providing training and motivate people with technical aspects of rooftop gardening.

A Sustainability Study Based on Farm Management Value-Chain Structure (농업경영의 가치사슬 구조에 근거한 지속가능성 연구)

  • Cheong, Hoon-Hui;Kim, Sa-Gyun;Heo, Seoung-Wook
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.2
    • /
    • pp.363-384
    • /
    • 2009
  • This study aimed at finding directions for Korean agriculture to establish a new paradigm of sustainable development. Various problematic issues and concerns in the environment necessitate the transformation of Korea's development paradigm from unconditional growth to "Green Growth" through new policies on green value and review of various advanced researches. In this research, the environment-friendly agriculture's problems, particularly in agribusiness were analyzed. Drawing from Michael Porter's Value Chain Analysis, this research developed a value chain model in agriculture that reflects the environment and the present situations. Future directions in the agriculture sector were also discussed. Korea realized food self-sufficiency through the green revolution in the early 1970s. However, a lot of problems have also occurred, including ground and water pollution and the destruction of ecosystems as a result of the overuse of pesticides and chemical fertilizers. In the late 1970s, the growing interest on environment-friendly agriculture led to the introduction of sustainable methods and techniques. Unfortunately however, these were not innovative enough to foster environment-friendly agriculture. Thereafter, the consumers' distrust on agricultural products has worsened and concerns about health have increased. In view of this, the Ministry of Food, Agriculture, Forestry and Fisheries introduced in December 1993 a system of Quality-Certified Products for organic and pesticide-free agri-foods. Although a fundamental step toward the sustainability of the global environment, this system was not enough to promote environment-friendly agriculture. In 2008, Korea's vision is for "Low Carbon Green Growth" to move forward while also coping with climate change. But primary sectors in a typical value chain do not consider the green value of their operations nor look at production from an environmental perspective. In order to attain sustainable development, there is a need to use less resources and energy than what is presently used in Korean agricultural and value production. The typical value chain should be transformed into a "closed-loop" such that the beginning and the end of the chain are linked together. Such structure allows the flow of materials, products and even wastes among participants in the chain in a sustained cycle. This may result in a zero-waste sustainable production without destroying the ecosystem.

  • PDF

Effect of Soil Microbial Diversity in Paddy Wetland under Organic Rice-Fish Mixed Farming System (유기농 복합생태 논습지의 토양 미생물 다양성 증진 효과)

  • Han, Yangsoo;Park, Choongbae;Cho, Jung-Lai;Park, Sang-Gu;Kong, Min-Jae;Nam, Hong-Shik;Son, Jinkwan
    • Journal of Wetlands Research
    • /
    • v.24 no.2
    • /
    • pp.69-82
    • /
    • 2022
  • In this study, we investigated the bacterial community structure in organic rice-fish mixed farming paddy soil by using high-throughput sequencing technology. The results showed that compared with the organic rice cultivated soil, the content of AP (available phosphorus) increased by 310.23 % and the content of OM (organic matter) increased by 168.83%. The most abundant phyla in paddy soils were Proteobacteria, Bacteriodetes, and Chloroflexi, whose relative abundance was above 47.83%. Among the dominant genera, the relative abundance of Limisphaera in paddy soils was observed. Alpha diversity indicated that the bacterial diversity of paddy soils was similar among each other. The bacterial community structure was affected by the relative abundance of bacteria, not the species of bacteria. Principal Coordinated Analysis (PCoA) results showed that the bacterial communities in organic rice-fish mixed farming soil and organic paddy soil were correlated to each other; the bacterial community structure was distinctively grouped by four different systems (paddy soil under organic rice-fish mixed farming system, organic rice cultivation, and conventional rice cultivation), where the first two are closely related to each other than the third one. The results provide basal support for organic agri-cultivation while improving an ecological value at the same time.

The Innovation Ecosystem and Implications of the Netherlands. (네덜란드의 혁신클러스터정책과 시사점)

  • Kim, Young-woo
    • Journal of Venture Innovation
    • /
    • v.5 no.1
    • /
    • pp.107-127
    • /
    • 2022
  • Global challenges such as the corona pandemic, climate change and the war-on-tech ensure that the demand who the technologies of the future develops and monitors prominently for will be on the agenda. Development of, and applications in, agrifood, biotech, high-tech, medtech, quantum, AI and photonics are the basis of the future earning capacity of the Netherlands and contribute to solving societal challenges, close to home and worldwide. To be like the Netherlands and Europe a strategic position in the to obtain knowledge and innovation chain, and with it our autonomy in relation to from China and the United States insurance, clear choices are needed. Brainport Eindhoven: Building on Philips' knowledge base, there is create an innovative ecosystem where more than 7,000 companies in the High-tech Systems & Materials (HTSM) collaborate on new technologies, future earning potential and international value chains. Nearly 20,000 private R&D employees work in 5 regional high-end campuses and for companies such as ASML, NXP, DAF, Prodrive Technologies, Lightyear and many others. Brainport Eindhoven has a internationally leading position in the field of system engineering, semicon, micro and nanoelectronics, AI, integrated photonics and additive manufacturing. What is being developed in Brainport leads to the growth of the manufacturing industry far beyond the region thanks to chain cooperation between large companies and SMEs. South-Holland: The South Holland ecosystem includes companies as KPN, Shell, DSM and Janssen Pharmaceutical, large and innovative SMEs and leading educational and knowledge institutions that have more than Invest €3.3 billion in R&D. Bearing Cores are formed by the top campuses of Leiden and Delft, good for more than 40,000 innovative jobs, the port-industrial complex (logistics & energy), the manufacturing industry cluster on maritime and aerospace and the horticultural cluster in the Westland. South Holland trains thematically key technologies such as biotech, quantum technology and AI. Twente: The green, technological top region of Twente has a long tradition of collaboration in triple helix bandage. Technological innovations from Twente offer worldwide solutions for the large social issues. Work is in progress to key technologies such as AI, photonics, robotics and nanotechnology. New technology is applied in sectors such as medtech, the manufacturing industry, agriculture and circular value chains, such as textiles and construction. Being for Twente start-ups and SMEs of great importance to the jobs of tomorrow. Connect these companies technology from Twente with knowledge regions and OEMs, at home and abroad. Wageningen in FoodValley: Wageningen Campus is a global agri-food magnet for startups and corporates by the national accelerator StartLife and student incubator StartHub. FoodvalleyNL also connects with an ambitious 2030 programme, the versatile ecosystem regional, national and international - including through the WEF European food innovation hub. The campus offers guests and the 3,000 private R&D put in an interesting programming science, innovation and social dialogue around the challenges in agro production, food processing, biobased/circular, climate and biodiversity. The Netherlands succeeded in industrializing in logistics countries, but it is striving for sustainable growth by creating an innovative ecosystem through a regional industry-academic research model. In particular, the Brainport Cluster, centered on the high-tech industry, pursues regional innovation and is opening a new horizon for existing industry-academic models. Brainport is a state-of-the-art forward base that leads the innovation ecosystem of Dutch manufacturing. The history of ports in the Netherlands is transforming from a logistics-oriented port symbolized by Rotterdam into a "port of digital knowledge" centered on Brainport. On the basis of this, it can be seen that the industry-academic cluster model linking the central government's vision to create an innovative ecosystem and the specialized industry in the region serves as the biggest stepping stone. The Netherlands' innovation policy is expected to be more faithful to its role as Europe's "digital gateway" through regional development centered on the innovation cluster ecosystem and investment in job creation and new industries.