• Title/Summary/Keyword: aglycones

Search Result 142, Processing Time 0.026 seconds

Isoflavone Contents and ${\beta}-Glucosidase$ Activities of Soybeans, Meju, and Doenjang (콩, 메주, 된장의 Isoflavone 함량 및 ${\beta}-Glucosidase$ 활성 측정)

  • Kim, Jung-Soo;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1405-1409
    • /
    • 1999
  • This study was conducted to investigate the isoflavone contents of soybeans, Meju, and Doenjang. $The\;{\beta}-glucosidase$ activities were also determined and characterized in soybeans, Meju, and Doenjang. The total concentration of daidzein was 406 mg/kg of soybeans, 433 mg/kg of Meju, and 538 mg/kg of Doenjang. Aglycones compose 26.03% of total isoflavones in soybeans, 61.96% in Meju, and 107.68% in Doenjang. The total concentration of genistein was 484, 200 and 538 mg/kg of soybeans, Meju and Doenjang, respectively. Aglycones compose 19.49% of total isoflavones in soybeans, 68.52% in Meju, and 85.26% in Doenjang. The ${\beta}-glucosidase$ activity was detected in soybeans (5.65 units/mg protein), Meju (2.04 units/mg protein), and Doenjang (0.69 units/mg protein). The optimal pH of ${\beta}-glucosidase$ activities were $6.5{\sim}7.0$ and the optimal temperature of ${\beta}-glucosidase$ activities was $50^{\circ}C$.

  • PDF

Modulation of Suppressive Activity of Lipopolysaccharide-Induced Nitric Oxide Production by Glycosidation of Flavonoids

  • Kwon, Yong-Soo;Kim, Sung-Soo;Sohn, Soon-Joo;Kong, Pil-Jae;Cheong, Il-Young;Kim, Chang-Min;Chun, Wan-Joo
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.751-756
    • /
    • 2004
  • Flavonoids have been demonstrated to exhibit a wide range of biological activities including anti-inflammatory and neuroprotective actions. Although a significant amount of flavonoids has been identified to be present as glycosides in medicinal plants, determinations of the biological activities of flavonoids were mainly carried out with aglycones of flavonoids. Therefore, the exact role of the glycosidation of flavonoid aglycones needs to be established. In an attempt to understand the possible role of glycosidation on the modulation of the biological activities of flavonoids, diverse glycosides of kaempferol, quercetin, and aromadendrin were examined in terms of their anti-inflammatory activity determined with the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells. The results indicated that glycosidation of aglycones attenuated the suppressive activity of aglycones on LPS-induced NO production. Although attenuated, some of glycosides, depending on the position and degree of glycosidation, maintained the inhibitory capability of LPS-induced NO production. These findings suggest that glycosidation of flavonoid aglycones should be considered as an important modulator of the biological activities of flavonoids.

A Modified Alkaline Hydrolysis of Total Ginsenosides Yielding Genuine Aglycones nad Prosapogenols

  • Im, kwang-Sik;Chang, Eun-Ha;Je, Nam-Gyung
    • Archives of Pharmacal Research
    • /
    • v.18 no.6
    • /
    • pp.454-457
    • /
    • 1995
  • To improve the yield of genuine aglycones from glycosides, the conditions of alkaline hydrolysis were investigated, and a modified method was established. The modified method empolyed pyridine as an aprotic solvent. To complete the hydrolysis and obtain 20(S)-protopanaxadiol (1) and 20(S)-protopanaxatriol(2), which are the genuine aglycones of ginsenosides, total ginsenosides were refluxed with sodium methoxide in pyridine. Addition of methanol, a protic polar solvent to the reaction miuxture, led partial hydrolysis yielding a mixture of the genuine prosapogenols. Of the prosapogenols compound 3 and 6 characteristically possessed D-glucopyranosyl moiety attached at the sterically hindered C-20 hydroxyl group. 3 and 6 were not obtaijned by other hydrolysisw methods except by the soil bacterial hydrolysis.

  • PDF

Effect of Genistein and Daidzein on Glucose Uptake in Isolated Rat Adipocytes; Comparison with Respective Glycones

  • Choi, Myung-Sook;Jung, Un-Ju;Kim, Myung-Joo;Kim, Jong-Yeon;Park, So-Young;Jang, Joo-Yeum;Lee, Mi-Kyung
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • Soy and soy foods are a rich source of isoflavones, which possess several biological activities. The effect of soy isoflavones, genistin and diadzin and their respective aglycones, on glucose uptake in adipocytes isolated from normal or high-fat fed rats was examined. As expected, insulin stimulated glucose uptake in a concentration-dependent manner. However, genistin and daidzin and their aglycones inhibited glucose uptake in a concentration-dependent (25-100μM) manner. In a time-course response, the aglycones significantly inhibited glucose uptake throughout 3 hr (after 30, 60, 120, 180 min), whereas the glycones only significantly inhibited the glucose uptake after 120 min and 180 min in the isolated rat adipocytes. Thus, the glucosides of genistein and daidzein, i.e. genistin and daidzin, were much less effective in inhibiting glucose uptake than their aglycones. In addition, genistin and daidzin did not significantly affect the insulin-stimulated glucose uptake, whereas genistein and daidzein did significantly inhibited glucose uptake compared to the vehicle control group by 47.5% and 24.8%, respectively (p < 0.05). The isoflavones also significantly inhibited glucose uptake in adipocytes isolated from rats fed a high-fat diet (50% of total calorie intake) when compared to the vehicle control. Finally, the isoflavones were found to enhance lipolysis in adipocytes isolated from high-fat fed rats, where the glycerol released by the aglycones was also higher than that released by the glycones. The current results showed that the inhibitory effect of daidzein on glucose uptake was very similar to that of genistein. The aglycones were more potent in inhibiting the uptake of glucose and a more potent stimulator of lypolysis than the glycones in adipocytes isolated from high-fat fed rats.

Determination of Phenolic acids and Flavonol Aglycone Contents in Orostachys japonicus A. Berger Grown under Various Cultivation Conditions

  • Jang, Sang-Hun;Lee, Sang-Gyeong;Kang, Jin-Ho;Park, Jong-Cheol;Shin, Sung-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.5
    • /
    • pp.311-316
    • /
    • 2006
  • The content of four phonolic acids 1-4, and two flavonol aglycones 14 and 15 from Orostachysjaponicus A. Berger grown under night-break and day-length controlled experiments was estimated and compared with those in wild plants. The amount of the phenolic acids 1-4 and the flavonol aglycones 14 and 15 increased with increasing light irradiation under both the night-break and day-length control conditions. It was disclosed that the cultivation conditions such as the night-break and the day-length control were not adversely affect the production of phenolic acids and flavonols in Orostachys japonicus A. Berger extracts.

Production of a High Value-Added Soybean Containing Bioactive Mevinolins and Isoflavones

  • Pyo, Young-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • The production of mevinolin, a potent hypocholesterolemic drug, and the bioconversion of isoflavones were investigated in soybeans fermented with Monascus pilosus KFRI-1140. The highest yields of 2.94 mg mevinolins and 1.13 mg isoflavone aglycones per g dry weight of soybean were obtained after 20 days of fermentation. Mevinolin was present in the fermentation substrate predominantly in the hydroxycarboxylate form (open lactone, 94.8$\sim$96.7%), which is currently being used as an hypocholesterolemic agent. The significant (p<0.01) bioconversion (96.6%) of the glucoside isoflavones (daidzin, glycitin, genistin) present in the soybean to the bioactive aglycones (daidzein, glycitein, genistein), with a 15.8-fold increase of aglycones was observed. The results suggest that Monascus-fermented soybean has potential as a novel medicinal food or multifunctional food supplement.

Antioxidative Properties of Ginseng Leaf Flavonoids on Cellular Membranes

  • Park, Soo-Nam;San
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-17
    • /
    • 1990
  • The major flavonoid component of Ginseng leaf is trifolin, a glycoside of kaempferol. To evaluate the antioxidative properties of trifolin and kaempferol on cellular membranes, we compared them with the other flavonoids through the 102-Induced photohemolysis of rabbit erythrocytes. All the flavonoid aglycones including kaempferol, quercetin and baicalein protected effectively the cells from the 102-caused damage in a dose- dependent manner, by scavenging 102 and free radicals in the cellular membranes. The solubilization of the flavonoid aglycones into micelles or erythrocyte membranes was deduced from spectro-photometric and microscopic observations. The flavonoid glycosides were not protective or less protective than their corresponding aglycones, and trifolin was the only glycoside that exhibited a solubilization into the membranes and a significant protection against the photohemolysis. We also tested some phenolic compounds contained in Ginseng, and found that they did not prevent the photohemolysis so effectively as kaempferol or trifolin.

  • PDF

Changes in the Accumulation of Isoflavonoids in Soybeans by Stress (Stress에 의한 대두의 Isoflavonoid 화합물 축적변화)

  • Kim, Jin Tae;Kim, Jang Eok
    • Current Research on Agriculture and Life Sciences
    • /
    • v.12
    • /
    • pp.9-22
    • /
    • 1994
  • The changes of the time-dependent accumulation of isoflavone aglycones(daidzein, genistein) and their glucosides(daidzin, genistin) by various stress-inducing treatment on cotyledon of soybeans(Dankyungkong and Paldalkong) were investigated. Levels of isoflavone aglycones and their glucosides in soybeans treated with UDP-glucose, $MgSO_4$ and $HgCl_2$ and infected with phytopathogen appeared to be higher than those of treatment with distilled water. When compared with data for control, the levels of isoflavone glucosides in citrate-treated soybeans were increased but those of their aglycones did not appear appreciable differences. In Paldalkong treated with UDP-glucose, $MgSO_4$ and $HgCl_2$ the levels of isoflavone aglycones and their glucosides were higher than in Dankyungkong. In particular, the accumulation of daidzein in Paldalkong was significantly higher than in Dankyungkong. By infection with Botrytis cinerea, the maximum amount of accumulation of daidzein in two cultivar did not to be a large different, but accumulation time appeared more rapidly in Paldalkong than Dankyungkong. The accumulation amount of daidzein and genistein in Dankyungkong treated with elicitors appeared to be similar at initial stage, but the level of daidzein after 48hours appeared to be higher than that of genistein. In Paldalkong, the level of daidzein was higher than that of genistein at all stage. The level of daidzein in soybeans infected with phytopathogen appeared to be higher than that of genestein.

  • PDF

Action of Dammarane-Type Triterpenoidal Glycosides and Their Aglycones on Lipid Membranes (지질막에 대한 Dammarane-Type Triterpenoidal Glycosides와 그 Aglycones의 작용)

  • Kim, Yu.A.;Park, Kyeong-Mee;Hyun, Hack-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.269-273
    • /
    • 1996
  • We investigated the effects of ginseng glycosides and their aglycones on processes of single ion channel formation and channel properties. The glycosides, Rg, and Rb, , and their aglycones, 20-(S)-protopanaxatriol (PT) and 20-(S)-protopanaxadiol (PD) increased the membrane permeability for ions. PT, PD, Rg1, and Rb1; at concentrations of 0.5, 3.0, 10.0 and 30.0 $\mu\textrm{g}$/ml respectively; Induced single ion channel fluctuations with the life times in the range of 0.1~1005 in open states and conductances from 5 to 30 pS in 1 M KCI. At high concentrations of these substances, rapid fluctuations of transmembrane ion current with amplitude from hundred pS to dozen nS were observed. Against other substances, ginsenoside Rbl began to increase the membrane conductance at concentration of about 60 $\mu\textrm{g}$/ml without fluctuation of single ion channel. Membranes treated with PT, PD, Rg1 and Rb1 are more permeable to K+, than to Cl while zero current membrane potentials with 10 gradients of KCI were 12, 16, 8, 25 mV respectively. Key words : Membrane conductance, single ion channel, ginsenosides.

  • PDF

Intestinal Bacterial Metabolism of Flavonoids and Its Relation to Some Biological Activities

  • Kim, Dong-Hyun;Jung, Eun-Ah;Sohng, In-Suk;Han, Jung-Ah;Kim, Tae-Hyung;Han, Myung-Joo
    • Archives of Pharmacal Research
    • /
    • v.21 no.1
    • /
    • pp.17-23
    • /
    • 1998
  • Flavonoid glycosides were metabolized to phenolic acids via aglycones by human intestinal microflora producing ${\alpha}$-rhamnosidase, exo-${\beta}$-glucosidase, endo- ${\beta}$-glucosidase and/or ${\beta}$-glucuronidase. Rutin, hesperidin, naringin and poncirin were transformed to their aglycones by the bacteria producing ${\alpha}$-rhamnosidase and ${\beta}$-glucosidase or endo- ${\beta}$-glucosidase, and baicatin, puerarin and daidzin were transformed to their aglycones by the bacteria producing ${\beta}$glucuronidase, C-glycosidase and ${\beta}$-glycosidase, respectively. Anti-platelet activity and cytotoxicity of the metabolites of flavonoid glycosides by human intestinal bacteria were more effective than those of the parental compounds. 3,4-Dihydroxyphenylacetic acid and 4-hydroxyl-phenylacetic acid were more effective than rutin and quercetin on anti-platelet aggregation activity. 2,4,6-Trihydroxybenzaidehyde, quercetin and ponciretin were more effective than rutin and ponciretin on the cytotoxicity for tumor cell lines. We insist that these flavonoid glycosides should be natural prodrugs.

  • PDF