• 제목/요약/키워드: aging properties

검색결과 1,320건 처리시간 0.031초

변형률 속도에 따른 Fe-24.5Mn-4Cr-0.45C 합금의 인장 특성과 동적 변형시효 (Influence of Strain Rate on Tensile Properties and Dynamic Strain Aging of an Fe-24.5Mn-4Cr-0.45C Alloy)

  • 이승용;황병철
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.281-286
    • /
    • 2016
  • In the present study, the tensile properties and dynamic strain aging of an Fe-24.5Mn-4Cr-0.45C alloy were investigated in terms of strain rate. During tensile testing at room temperature, all the stress-strain curves exhibited serrated plastic flows related to dynamic strain aging, regardless of the strain rate. Serration appeared right after yield stress at lower strain rates, while it was hardly observed at high strain rates. On the other hand, strain-rate sensitivity, indicating a general relationship between flow stress and strain rate at constant strain and temperature, changed from positive to negative as the strain increased. The negative strain-rate sensitivity can be explained by the Portevin Le Chatelier effect, which is associated with dynamic strain aging and is dependent on the strain rate because it is very likely that the dynamic strain aging phenomenon in high-manganese steels is involved in the interaction between moving dislocations and point-defect complexes.

B-KNO3 점화제의 가속 노화 특성 연구 (A Study on Acceleration Aging Characteristics of B-KNO3 Igniter)

  • 백종규;류병태;권미라
    • Korean Chemical Engineering Research
    • /
    • 제52권2호
    • /
    • pp.166-174
    • /
    • 2014
  • 본 연구에서는 점화제로 사용되는 $B-KNO_3$의 가속노화 실험에 따른 특성변화를 고찰하였다. 점화제는 보관 방법이나 보관기간에 따라 점화 효율이 저하되는 경향이 있으며 안정된 사용을 위해서는 이에 대한 명확한 이해가 필요하다. 따라서 노화에 대한 원인 규명을 위해 가속화 시험 시편의 미세구조와 결정구조 및 열분석을 수행하였으며 점화 특성에 끼치는 영향성을 규명하고자 하였다. 산화제로 첨가된 $KNO_3$의 결정구조를 분석함으로써 노화에 끼치는 산화제 영향을 해석하였다. 결론적으로 산화제의 결정구조가 안정한 구조로 변화되었으며 활성화 에너지변화에 영향을 끼쳤다.

25Cr-7Ni-2Mo-4W 슈퍼 2상 스테인리스강의 기계적 성질에 미치는 R상의 영향 (Effect of R Phase Formation on the Mechanical Properties of 25Cr-7Ni-2Mo-4W Super Duplex Stainless Steel)

  • 이병찬;강창룡
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.401-406
    • /
    • 2014
  • In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effects on the mechanical properties of 25%Cr-7%Ni-2%Mo-4%W super duplex stainless steel. The R-phase was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging. It was transformed into the ${\sigma}$-phase with an increase of the aging time. The ferrite phase was decomposed into a new austenite(${\gamma}_2$)phase and the ${\sigma}$-phase by an aging treatment. The R phase was an intermetallic compound showing higher molybdenum and tungsten concentrations than the matrix and also showed higher molybdenum and tungsten concentrations than the ${\sigma}$ phase. In the initial stage of aging, precipitation of the R-phase did not change the hardness, the strength and the elongation. The hardness and the strength increased upon a longer aging time, but the elongation rapidly decreased. These results show that the R-phase did not significantly affect the hardness and the strength, though it did influence the elongation.

피혁 폐기물을 재활용한 재생가죽의 내노화특성 연구 (A Study on Anti-Aging Properties of Recycled Leather Using Shaving Scrap by Applying Antioxidant)

  • 서은호;임성욱;이윤섭;김원주;박은영
    • 한국염색가공학회지
    • /
    • 제35권3호
    • /
    • pp.151-158
    • /
    • 2023
  • In this study, we investigated the durability properties of the recycled leather using shaving scrap with antioxidant. Recycled leather sheets were manufactured by mixing shaving scrap and NB latex as a binder. HALS(Hindered Amine Light Stabilizer) and UVA(UV absorbers) were used as antioxidant. Mechanical properties such as hardness, tensile strength, elongation, tear strength and abrasion resistance were measured. Light aging resistance was evaluated using UV lamp and the degree of discoloration of the recycled leather sheets using a gray scale. In addition, to evaluate heat aging and UV aging, the degree of discoloration of the recycled leather sheets over time was measured using colorimeter. Washing fastness was evaluated on the degree of dyeing of recycled leather sheets for six type of multi-fiber woven fabrics (Acetate, Cotton, Nylon-66, Polyester, Acryl, Wool). To determine whether hazardous substances were detected in recycled leather sheets, the contents of arylamine and Cr 6+ were evaluated. As a result, when used in combination with antioxidant, the heat aging and light aging of recycled leather were improved and hazardous substance were not detected.

W이 첨가된 슈퍼 2상 스테인리스강의 미세조직과 기계적성질에 미치는 시효처리의 영향 (The Effect of Aging Treatment on the Microstructure and Mechanical Properties of Super Duplex Stainless Steel with W)

  • 김수천;배동수;강창룡
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.52-57
    • /
    • 2009
  • The effect of aging treatment on the microstructure and mechanical properties of super duplex stainless steel with W was investigated. The phase was precipitated mainly at the early stage of aging and a lower aging temperature under $750^{\circ}C$, but the phase was formed after long-term aging treatment between $600^{\circ}C$ and $900^{\circ}C$. The volume fraction of the phase increased with aging temperature up to $750^{\circ}C$ and then decreased up to $900^{\circ}C$. With an increase in the aging time, the volume fraction phase at the early stage of aging increased slightly, and then increased rapidly beyond a certain time. The rapid increase in the tensile strength and hardness and decrease in the elongation and impact toughness were measured with aging temperatures up to $750^{\circ}C$. On the other hand, the tensile strength and hardness decreased slightly, and the elongation and Charpy impact toughness were unchanged with aging temperatures over $750^{\circ}C$. The tensile strength and hardness increased rapidly at the early stage of aging, and then increased slowly beyond a certain time. The elongation and Charpy impact toughness decreased rapidly at the early stage of aging, and then remained unchanged beyond a certain time. The phase that formed at the early stage of aging and the lower aging temperature had a considerable effect on the elongation and Charpy impact toughness of the super duplex stainless steel with W.

일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(III) - 미세조직 및 기계적 성질에 미치는 균질화처리 및 시효처리의 영향 - (Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(III) - The Effect of Homogenizing and Aging on the Microstructures and Mechanical Properties -)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • 제21권3호
    • /
    • pp.78-84
    • /
    • 2003
  • The changes of microstructure and hardness of TLP bonds of directionally solidified Ni base superalloy, GTD-111, with variation of homogenizing and aging treatment were investigated. The specimens were bonded at 1403K for 7.2ks using different insert metals such as MBF-50, MBF-80 and MBF-90 and they were homogenized at 1393K with various holding time. At center of bonded interlayer homogenized for hold time 30h, the contents of aluminum and titanium were approximately 90% and 95% of base metal, respectively. In this study, aging was performed at three different kinds : one step aging ; 1113K $\times$ 16h, two step aging ; 1113K $\times$ 10h ⇒ 1103K $\times$ 10h, three step aging ; 1113K $\times$ 10h ⇒ 1103K $\times$ 8h ⇒ 922K $\times$ 24h. ${\gamma}$' volume fraction and hardness of joints were high in the sequence of one step, two step and three step aging, whereas ${\gamma}$' volume fraction and hardness of joints obtained by three step aging treatment were higher than those of raw material. Tensile properties of joints bonded with MBF-80 and MBF-90, homogenized at 1393K for 30h and then three step aged became excellent than those of raw material, however, joint bonded with MBF-50 was poor.

API X70 라인파이프강의 인장 특성에 미치는 변형 시효의 영향 (Effect of Strain Aging on the Tensile Properties of an API X70 Linepipe Steel)

  • 이승완;이상인;황병철
    • 한국재료학회지
    • /
    • 제27권10호
    • /
    • pp.524-529
    • /
    • 2017
  • The effect of strain aging on the tensile properties of API X70 linepipe steel was investigated in this study. The API X70 linepipe steel was fabricated by controlled rolling and accelerated cooling processes, and the microstructure was analyzed using optical and scanning electron microscopes and electron backscatter diffraction. Strain aging tests consisting of 1 % pre-strain and thermal aging at $200^{\circ}C$ and $250^{\circ}C$ were conducted to simulate U-forming, O-forming, Expansion(UOE) pipe forming and anti-corrosion coating processes. The API X70 linepipe steel was composed of polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite whose volume fraction was dependent on the chemical composition and process conditions. As the thermal aging temperature increased, the steel specimens showed more clearly discontinuous type yielding behavior in the tensile stress-strain curve due to the formation of a Cottrell atmosphere. After pre-strain and thermal aging, the yield and tensile strengths increased and the yield-to-tensile strength ratio decreased because yielding and aging behaviors significantly affected work hardening. On the other hand, uniform and total elongations decreased after pre-strain and thermal aging since dislocation gliding was restricted by increased dislocation density after a 1 % pre-strain.

납고무받침의 노화가 교량의 내진성능에 미치는 영향 (Influence of Aging of Lead Rubber Bearing on Seismic Performance of Bridges)

  • 박성규;오주
    • 대한토목학회논문집
    • /
    • 제32권2A호
    • /
    • pp.109-116
    • /
    • 2012
  • 지진격리장치로서 납고무받침의 동적 특성은 주재료인 고무재료의 동적거동과 비선형 성질에 의존하고 있다. 역학적이나 환경적인 영향으로 인해 고무재료에 노화가 진행되고 결국에는 손상이 불가피하게 발생하게 된다. 고무재료의 노화의 주원인은 높은 온도에서 반응열로 인한 산화반응으로 알려져다. 이에 따라 납고무받침의 가속 열 노화실험을 수행하여 열 노화 전 후에 대해 받침의 특성값을 상호 비교하였다. 실험 결과 열 노화 현상은 전단강성과 에너지 감쇠 그리고 등가감소계수에 영향이 있음을 알 수 있었다. 또한 열 노화에 의한 동적특성의 저하를 실제 교량에 적용하여 납고무받침의 열 노화가 교량의 교각의 내진성능에 미치는 영향을 수치해석을 통해 비교분석하였다. 해석결과 납고무받침에 대하여 열 노화에 따른 기본 특성변화가 교량의 내진성능에 미치는 영향은 크지 않음을 알 수 있었다.

Mg-Nd-Y-Zr-Zn 주조합금의 인장특성에 미치는 시효처리의 영향 (Effect of Aging Treatment on the Tensile Properties of Mg-Nd-Y-Zr-Zn Casting Alloys)

  • 김현식;예대희;강민철;김인배
    • 한국재료학회지
    • /
    • 제18권5호
    • /
    • pp.266-271
    • /
    • 2008
  • Magnesium alloys are alloyed with rare earth elements (Re, Ca, Sr) due to the limited use of magnesium in high-temperature conditions. In this study, the influences of Zr and Zn on the aging behavior of a Mg-Nd-Y alloy were investigated. magnesium alloys containing R.E elements require aging treatments Specifically, Nd, Y and Zr are commonly used for high-temperature magnesium alloys. Various aging treatments were conducted at temperatures of 200, 250 and $300^{\circ}C$ for 0.5, 1, 3, 6, and 10 hours in order to examine the microstructural changes and mechanical properties at a high temperature ($150^{\circ}C$). Hardness and high-temperature ($150^{\circ}C$) tensile tests were carried out under various aging conditions in order to investigate the effects of an aging treatment on the mechanical properties of a Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy. The maximum hardness was 67Hv; this was achieved after aging at $250^{\circ}C$ for 3 hours. The maximum tensile, yield strength and elongation at $150^{\circ}C$ were 237MPa, 145MPa and 13.6%, respectively, at $250^{\circ}C$ for 3 hours. The strengths of the Mg-3.05Nd-2.06Y-1.13Zr-0.34Zn alloy increased as the aging time increased to 3 hours at $250^{\circ}C$ This is attributed to the precipitation of a Nd-rich phase, a Zr-rich phase and $Mg_3Y_2Zn_3$.

Incoloy 825 합금의 기계적 성질에 미치는 열처리의 영향 (Effect of Solution Heat Treatment on Mechanical Properties in Incoloy 825 Alloy)

  • 박영태;김도훈;강창룡
    • 열처리공학회지
    • /
    • 제30권3호
    • /
    • pp.99-105
    • /
    • 2017
  • This study was carried out to investigate the effect of heat treatment on the microstructure and mechanical properties in 90% hot forged Incoloy 825 alloy. With increasing solution treatment temperature, the grain size increased and the volume fraction of total precipitates decreased, and the precipitates disappeared at $1,000^{\circ}C$. With increasing aging time at $700^{\circ}C$, the volume fraction of precipitate increased and the precipitates size increased. Most of the precipitates consist $Cr_{23}C_6$ carbide, and a small amount of TiC carbide was also observed. With decreasing solution treatment temperature and increasing aging time, tensile strength and hardness increased, and the elongation and impact value decreased. With increasing aging time, the impact value decreased sharply by the increased of the precipitate size.