Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.5.281

Influence of Strain Rate on Tensile Properties and Dynamic Strain Aging of an Fe-24.5Mn-4Cr-0.45C Alloy  

Lee, Seung-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.26, no.5, 2016 , pp. 281-286 More about this Journal
Abstract
In the present study, the tensile properties and dynamic strain aging of an Fe-24.5Mn-4Cr-0.45C alloy were investigated in terms of strain rate. During tensile testing at room temperature, all the stress-strain curves exhibited serrated plastic flows related to dynamic strain aging, regardless of the strain rate. Serration appeared right after yield stress at lower strain rates, while it was hardly observed at high strain rates. On the other hand, strain-rate sensitivity, indicating a general relationship between flow stress and strain rate at constant strain and temperature, changed from positive to negative as the strain increased. The negative strain-rate sensitivity can be explained by the Portevin Le Chatelier effect, which is associated with dynamic strain aging and is dependent on the strain rate because it is very likely that the dynamic strain aging phenomenon in high-manganese steels is involved in the interaction between moving dislocations and point-defect complexes.
Keywords
high-manganese steel; strain-rate sensitivity; dynamic strain aging; serrated plastic flow; tensile properties;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Y. N. Dastur and W. C. Leslie, Metall. Mater. Trans. A, 12A, 749 (1981).
2 H. K. Yang, Z. J. Zhang, F. Y. Dong, Q. Q. Duan and Z. F. Zhang, Mater. Sci. Eng. A, 607, 551 (2014).   DOI
3 J. E. Jung, J. Park, J. S. Kim, J. B. Jeon, S. K. Kim and Y. W. Chang, Met. Mater. Int., 20, 27 (2014).   DOI
4 J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um and Y. W. Chang, Met. Mater. Int., 20, 41 (2014).   DOI
5 D. Jeong, S. Lee, I. Seo, J. Yoo and S. Kim, Met. Mater. Int., 21, 22 (2015).   DOI
6 L. Chen, H. S. Kim, S. K. Kim and B. C. De Cooman, ISIJ Int., 47, 1804 (2007).   DOI
7 B. C. De Cooman, L. Chen, H. S. Kim, Y. Estrin, S. K. Kim and H. Voswinckel, Microstructure and Texture in Steels, Springer, Berlin, Germany (2009).
8 A. H. Cotterell and B. A. Bilby, Proc. Phys. Soc., A62, 49 (1949).
9 S. J. Lee, J. Kim, S. N. Kane and B. C. De Cooman, Acta Mater., 59, 6809 (2011).   DOI
10 A. Bintu, G. Vincze, C. R. Picu, A. B. Lopez and J. J. Gracio, Mater. Sci. Eng. A, 629, 54 (2015).   DOI
11 P. Rodriguez, Bull. Mater. Sci., 6, 653 (1984).   DOI
12 K. Renard, S. Ryelandt and P. J. Jacques, Mater. Sci. Eng. A, 527, 2969 (2010).   DOI
13 J. M. Reed and M. E. Walter, Mater. Sci. Eng. A, 359, 1 (2003).   DOI
14 L. Remy, Acta Metall., 26, 443 (1978).   DOI
15 O. Bouaziz, Scr. Mater., 66, 982 (2012).   DOI
16 B. C. De Cooman, J. K. Kim and K. H. Chin, High Mn TWIP Steels for Automotive Applications, INTECH Open Access Publisher (2011).
17 M. Koyama, T. Sawaguchi, T. Lee, C. S. Lee and K. Tsuzaki, Mater. Sci. Eng. A, 528, 7310 (2011).   DOI
18 Y. Nakada and A. S. Keh, Acta Metall., 18, 437 (1970).   DOI
19 P. H. Adler, G. B. Olsen and W. S. Owen, Metall. Trans. A, 17A, 1725 (1986).