• Title/Summary/Keyword: aging and microarray

Search Result 29, Processing Time 0.027 seconds

Aging and UV Irradiation Related Changes of Gene Expression in Primary Human Keratinocytes

  • Lee, Ok Joo;Lee, Sung-Young;Park, Jae-Bong;Lee, Jae-Yang;Kim, Jong-Il;Kim, Jaebong
    • Genomics & Informatics
    • /
    • v.3 no.2
    • /
    • pp.66-72
    • /
    • 2005
  • The epidermis is a physiological barrier to protect organisms against environment. During the aging process, skin tissues undergo various changes including morphological and functional changes. The transcriptional regulation of genes is part of cellular reaction of aging process. In order to examine the changes of gene expression during the aging process, we used the primary cell culture system of human keratinocytes. Since UV radiation is the most important environmental skin aggressor, causing skin cancer and other problems including premature skin aging, we examined the changes of gene expression in human keratinocytes after UV irradiation using oligonucleotide microarray containing over 10,000 genes. We also compared the gene expression patterns of the senescent and UV treated cells. Expression of the variety of genes related to transcription factors, cell cycle regulation, immune response was altered in human keratinocytes. Some of down-regulated genes are represented in both senescent and UV treated cells. The results may provide a new view of gene expression following UVB exposure and aging process in human keratinocytes.

DNA Microarray Analysis of Gene Expression Profiles in Aging process of Mouse Brain

  • Lee Mi-Suk;Heo Jee-In;Kim Jae-Bong;Park Jae-Bong;Lee Jae-Yang;Han Jeong-A.;Kim Jong-Il
    • Genomics & Informatics
    • /
    • v.4 no.1
    • /
    • pp.23-32
    • /
    • 2006
  • In order to investigate the molecular basis of the aging process in brain, we have employed high-density oligonucleotide microarrays providing data on 10,108 gene clusters to define transcriptional patterns in three brain regions, cerebral cortex, cerebellum, and hippocampus. Comparison of the expression patterns between young (6-week-old) and aged (17-month-old) C57BL/6 male micerevealed that about ten percent (1098) of the genes showed a significant change in the expression level in at least one of the three tissues. Among them, 23 genes were upregulated and 62 genes were downregulated in all three tissues of the old mice. The number of genes upregulated exclusively in hippocampus (337) was much larger compared to other tissues. Gene ontology-based analysis showed the genes related with signal transduction or molecular transports are more likely to be upregulated than downregulated in the aging process of hippocampus. These data may provide some useful means for elucidating the molecular aspect of aging in hippocampus and other regions in brain.

Genomic approaches for the understanding of aging in model organisms

  • Park, Sang-Kyu
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.291-297
    • /
    • 2011
  • Aging is one of the most complicated biological processes in all species. A number of different model organisms from yeast to monkeys have been studied to understand the aging process. Until recently, many different age-related genes and age-regulating cellular pathways, such as insulin/IGF-1-like signal, mitochondrial dysfunction, Sir2 pathway, have been identified through classical genetic studies. Parallel to genetic approaches, genome-wide approaches have provided valuable insights for the understanding of molecular mechanisms occurring during aging. Gene expression profiling analysis can measure the transcriptional alteration of multiple genes in a genome simultaneously and is widely used to elucidate the mechanisms of complex biological pathways. Here, current global gene expression profiling studies on normal aging and age-related genetic/environmental interventions in widely-used model organisms are briefly reviewed.

An Iterative Normalization Algorithm for cDNA Microarray Medical Data Analysis

  • Kim, Yoonhee;Park, Woong-Yang;Kim, Ho
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • A cDNA microarray experiment is one of the most useful high-throughput experiments in medical informatics for monitoring gene expression levels. Statistical analysis with a cDNA microarray medical data requires a normalization procedure to reduce the systematic errors that are impossible to control by the experimental conditions. Despite the variety of normalization methods, this. paper suggests a more general and synthetic normalization algorithm with a control gene set based on previous studies of normalization. Iterative normalization method was used to select and include a new control gene set among the whole genes iteratively at every step of the normalization calculation initiated with the housekeeping genes. The objective of this iterative normalization was to maintain the pattern of the original data and to keep the gene expression levels stable. Spatial plots, M&A (ratio and average values of the intensity) plots and box plots showed a convergence to zero of the mean across all genes graphically after applying our iterative normalization. The practicability of the algorithm was demonstrated by applying our method to the data for the human photo aging study.

Anti-aging Effect and Gene Expression Profiling of Aged Rats Treated with G. bimaculatus Extract

  • Ahn, Mi Young;Hwang, Jae Sam;Yun, Eun Young;Kim, Min-Ji;Park, Kun-Koo
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 2015
  • Extract from Gryllus bimaculatus crickets inhibits oxidation at the DNA level, with reduced production of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Microarray analyses were performed with a rat 28K cDNA clone set array to identify the gene expression profiles of aged (10 months old) Wistar Kyoto rats treated for one month with 100 mg/kg G. bimaculatus ethanol extract to assess the effects. The extract produced a meaningful anti-edema effect, evident by the inhibition of creatinine phosphokinase activity. The weights of abdominal and ovarian adipose tissues were reduced and the proportion of unsaturated fatty acids in adipose tissues was increased in an extract dose-dependent manner. Compared with untreated control rats, rats treated with the extract displayed the upregulation of 1053 genes including Fas (tumor necrosis factor receptor superfamily, member 6), Amigo3 (adhesion molecule with an immunoglobulin-like domain), Reticulon 4, 3-hydroxy-3-methylglutaryl-coenzyme (Hmgcr; a reductase), related anti-fatigue (enzyme metabolism), and Rtn antioxidant, and the downregulation of 73 genes including Ugt2b (UDP glycosyltransferase 2 family), Early growth response 1, and Glycoprotein m6a. Data suggest that G. bimaculatus extract may have value in lessening the effects of aging, resulting in a differential gene expression pattern indicative of a marked stress response and lower expression of metabolic and biosynthetic genes.

The effect on gene expression profile of rat hippocampus caused by administration of memory enhancing herbal extract (육미지황탕가미방(六味地黃湯加味方)이 흰쥐의 기억능력과 중추신경계 유전자 발현에 미치는 영향)

  • Choi, Bo-Eop
    • Korean Journal of Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.109-126
    • /
    • 2002
  • The herbal extract (YMT_02) is a modified herbal extracts from Yukmijihwangtang (YMJ) to promote memory-enhancing. The YMJ extracts has been widely used as an anti-aging herbal medicine for hundred years in Asian countries. The purpose of this study is to; 1) quantitatively evaluate the memory-enhancing effect of YMT_02 by hehavior task, 2) identify candidate genes responsible for enhancing memory by cDNA microarray and 3) assess the anti-oxidant effect of YMT_02 on PC12 cell. Memory retention abilities are addressed by passive avoidance task with Sprague-Dawley (SD) male rat. Before the training session, the rats are subdivided into four groups and administrated with YMT_02, Ginkgo biloba, Soya lecithin and normal saline for 10 days. The retention test was performed. 24 hours after the training session. The retention time of the YMT_02 group was significantly (p<0.05) delayed $({\sim}100%)$, whereas Ginkgo biloba and Soya lecithin treatment delayed 20% and 10% respectively. The hippocampi of YMT_02 and control group were dissected and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied and mRNA was further purified. After synthesizing cDNA using oligo-dT primer, the cDNA were applied to Incyte rat GEMTM 2 cDNA microarray. The microarray results show that prealbumin(transthyretin), phosphotidy lethanolamine N-methyltransferase, and PEP-19 are expressed abundantly in the YMT_02 treated group. Especially, PEP-19 is a neuron-specific protein, which inhibits apoptotic processes in neuronal cell. On the other hand, transcripts of RAB15, glutamate receptor subunit 2 and CDK 108 are abundant in control group. Besides, neuronal genes involved in neuronal death or neurodegeneration such as neuronal-pentraxin and spectrin are abundantly expressed in control group. Additionally, the YMT_02 shows an anti oxidative effect in the PC12 cell. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the memory-enhancing effect of herbal extracts YMT_02, for example, anti-apoptotic, anti-oxidative, and neuroprotective effects.

  • PDF

Regulation of UVB-induced DRAM1-Autophagy protein in HDF Cells by the Vitexin (Vitexin에 의한 HDF 세포에서 UVB 유도 DRAM1-오토파지 단백질)

  • Byun, Seo-Jung;Kang, Sang-Mo;Cho, Young Jae
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.201-210
    • /
    • 2021
  • This study was carried out to investigate the Fagopyrum esculentum (F. esculentum) extracts and vitexin are as the results of microarray, cell proliferation, cell wound recovery, cell cycle, microphage pattern and protein analysis for damage improvement caused by UVB-induced damage. Microarray results showed that UVB-induced increase in DRAM1, Atg2a and Atg13 genes was reduced in F. esculentum ethanol extract and vitexin. Cell proliferation, wound repair, cell cycle, and microphage patterns were improved in F. esculentum ethanol extract and vitexin, while buckwheat ethanol extract and vitexin decreased in both DRAM1, Beclin-1, and LC3 I/II in the vitexin treatment group and p-mTOR and survivin were all increased in protein analysis. It is thought that it can recover to normal and control autophagy, one of the causes of cell aging caused by UVB, to inhibit and regenerate cell death. F. esculentum ethanol extract and vitexin can be used as a functional cosmetic ingredient.

Cilostazol Promotes the Migration of Brain Microvascular Endothelial Cells (Cilostazol에 의한 뇌혈관내피세포의 세포이동 증진 효과연구)

  • Lee, Sae-Won;Park, Jung Hwa;Shin, Hwa Kyoung
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1367-1375
    • /
    • 2016
  • Cilostazol is known to be a selective inhibitor of phosphodiesterase III and is generally used to treat stroke. Our previous findings showed that cilostazol enhanced capillary density through angiogenesis after focal cerebral ischemia. Angiogenesis is an important physiological process for promoting revascularization to overcome tissue ischemia. It is a multistep process consisting of endothelial cell proliferation, migration, and tubular structure formation. Here, we examined the modulatory effect of cilostazol at each step of the angiogenic mechanism by using human brain microvascular endothelial cells (HBMECs). We found that cilostazol increased the migration of HBMECs in a dose-dependent manner. However, it did not enhance HBMEC proliferation and capillary-like tube formation. We used a cDNA microarray to analyze the mechanisms of cilostazol in cell migration. We picked five candidate genes that were potentially related to cell migration, and we confirmed the gene expression levels by real-time PCR. The genes phosphoserine aminotransferase 1 (PSAT1) and CCAAT/enhancer binding protein ${\beta}$ ($C/EBP{\beta}$) were up-regulated. The genes tissue factor pathway inhibitor 2 (TFPI2), retinoic acid receptor responder 1 (RARRES1), and RARRES3 were down-regulated. Our observations suggest that cilostazol can promote angiogenesis by promoting endothelial migration. Understanding the cilostazol-modulated regulatory mechanisms in brain endothelial cells may help stimulate blood vessel formation for the treatment of ischemic diseases.

Compound K Activates Hyaluronan Synthase 2 in transformed human Keratinocytes and Fibroblasts and Increases hyaluronan in hairless mouse skin

  • Kim, Su-Jong;Kang, Byung-Yang;Cho, Si-Yang;Sung, Dae-Suk;Shin, Eiu-Suk;Chang, Hui-Kyung;Yeom, Myung-Hun;Woo, Kwang-Sik;Kim, Duk-Hee;Sim, Young-Chul;Lee, Yong-Sung
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.741-762
    • /
    • 2003
  • Ginsenosides, the major active ingredients of ginseng, show a variety of biomedical efficacies such as anti-aging, anti oxidation and anti-inflammatory activities. To understand the effects of compound K (20-O-D-glucopyranosyl-20 (S)-protopanaxadiol), one of the major metabolite of ginsenosides on the skin, we assessed the expression level of ∼ 100 transcripts in compound K-treated HaCaT cells using cDNA microarray analysis. Compound K treatment induced differential expression of 21 genes, which have been reported to be involved in the organization of ECM structure as well as defense responses in human skin cells. One of the most interesting findings is 2-fold increase in hyaluronan synthase2 (HAS2) gene expression by compound K. We found that change in expression of HAS2 gene represents a specific response of HaCaT cells to compound K because hyaluronan synthase 1, 3 was not changed by treatment with compound K. We also demonstrated that the compound K effectively induced hyaluronan synthesis in human skin cells and hairless mouse skin. The human clinical study indicates that topical application of compound K-containing oil-in-water emulsion showed improvement of xerosis, wrinkle and fine lines in the aged skin. We concluded that compound K has anti-aging effects by the induction of HAS2 gene expression and following hyaluronan synthase.

  • PDF

Optimization of a microarray for fission yeast

  • Kim, Dong-Uk;Lee, Minho;Han, Sangjo;Nam, Miyoung;Lee, Sol;Lee, Jaewoong;Woo, Jihye;Kim, Dongsup;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.28.1-28.9
    • /
    • 2019
  • Bar-code (tag) microarrays of yeast gene-deletion collections facilitate the systematic identification of genes required for growth in any condition of interest. Anti-sense strands of amplified bar-codes hybridize with ~10,000 (5,000 each for up-and down-tags) different kinds of sense-strand probes on an array. In this study, we optimized the hybridization processes of an array for fission yeast. Compared to the first version of the array (11 ㎛, 100K) consisting of three sectors with probe pairs (perfect match and mismatch), the second version (11 ㎛, 48K) could represent ~10,000 up-/ down-tags in quadruplicate along with 1,508 negative controls in quadruplicate and a single set of 1,000 unique negative controls at random dispersed positions without mismatch pairs. For PCR, the optimal annealing temperature (maximizing yield and minimizing extra bands) was 58℃ for both tags. Intriguingly, up-tags required 3× higher amounts of blocking oligonucleotides than down-tags. A 1:1 mix ratio between up- and down-tags was satisfactory. A lower temperature (25℃) was optimal for cultivation instead of a normal temperature (30℃) because of extra temperature-sensitive mutants in a subset of the deletion library. Activation of frozen pooled cells for >1 day showed better resolution of intensity than no activation. A tag intensity analysis showed that tag(s) of 4,316 of the 4,526 strains tested were represented at least once; 3,706 strains were represented by both tags, 4,072 strains by up-tags only, and 3,950 strains by down-tags only. The results indicate that this microarray will be a powerful analytical platform for elucidating currently unknown gene functions.